
2/25/2025

Believability: A
Comparison of
Pathfinding
Algorithms
GDEV60001 Games Development Project
Harry Watts
W016075M

Supervisor: Davin Ward

Second Assessor: James Banton

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 1 ~

Contents
Glossary .. 3

List of Figures .. 3

Abstract .. 6

Introduction .. 6

Aim and Objectives .. 7

Literature Review ... 8

How AI has Changed ... 8

Pathfinding ... 10

1. Dijkstra’s Algorithm .. 10

2. A* Pathfinding .. 12

3. Dynamic Pathfinding .. 18

Planning ... 28

4. Finite State Machine ... 28

5. Behaviour Trees ... 28

6. Reactive Behaviour Trees and MARPO .. 30

7. Automated Planners ... 32

Research Methodologies .. 32

8. Artifact Creation ... 33

9. Testing and Results .. 33

10. Interpreting the Data ... 35

Results and Findings .. 35

11. Computational Results ... 35

12. Heatmap Results .. 41

13. Questionnaire Responses ... 48

Discussion and Analysis ... 52

14. Computational Discussion .. 52

15. Heatmap Discussion... 53

16. Questionnaire Discussion ... 55

Conclusion .. 56

Recommendations .. 57

Appendix ... 59

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 2 ~

Bibliography .. 60

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 3 ~

Glossary
∈ - Element of a set

⊆ - Subset

A* - A-Star

Agent - AI Actor

AI - Artificial Intelligence

D* - Dynamic A*

FPS - Frames Per Seconds

FSM – Finite State Machine

GOAP - Goal Oriented Action Planning

Locally Consistent – Nodes g-values equal the rhs-values

LPA* - Lifelong Planning A*

MARPO - Movement, Avoidance, Routing, Planning and Orders

Nav Mesh – Navigation mesh

Rhs – Right Hand Sides

RTS – Real Time Strategy

List of Figures
Figure 1.1 Simple Binary Tree .. 11
Figure 1.2 Basic Search Space Graph containing several nodes. 12
Figure 2.1 ℎ ∗ 𝑛 = 𝑐𝑜𝑠𝑡𝜋 ∗ 𝑛, 𝑔𝑜𝑎𝑙 ... 13
Figure 2.2 ℎ𝑛 ≤ ℎ ∗ 𝑛 .. 13
Figure 2,3 ℎ𝑛 = 𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙 + 𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙 ... 13
Figure 2.4 ℎ𝑛 = 𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙2 + 𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙 ... 14
Figure 2.5 ℎ𝑛 = 𝑚𝑎𝑥𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙, 𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙 + 0.41 · 𝑚𝑖𝑛𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙, 𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙 14
Figure 2.6 𝑓𝑥 = 𝑔𝑥 + ℎ𝑥 ... 14
Figure 2.7 Directed Weighted Graph .. 15
Figure 2.8 Grid with a starting node (in green) and the frontier nodes (in blue) 16
Figure 2.9 Pseudocode of A* ... 17
Figure 2.10 Dijkstra’s algorithm vs A* created in Pathfinding.js (qiao, 2023) 18
Figure 3.1 Algorithm for PROCESS-STATE in D* algorithm (Stentz, 1994) 20

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 4 ~

Figure 3.2 Algorithm for MODIFIY-COST (Stentz, 1994) .. 20
Figure 3.3 Average time to complete paths for A*, Dijkstra's algorithm and D* (Iskanda, et

al., 2020) .. 21
Figure 3.4 comparing the time complexities of A* vs D* (Reeves, 2019) 22
Figure 3.6 0 < 𝑐𝑠, 𝑠′ ≤ ∞#3.5 ... 23
𝑔 ∗ 𝑠 = 0 𝑖𝑓 𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑚𝑖𝑛𝑠′ ∈ 𝑝𝑟𝑒𝑑𝑠𝑔 ∗ 𝑠′ +

𝑐𝑠′ , 𝑠 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ... 23
Figure 3.7 First and second pass pathfinding search (Koenig, et al., 2004) 24
Figure 3.8 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = 𝑔𝑥 == 𝑟ℎ𝑠𝑥 .. 24
Figure 3.9 𝑂𝑣𝑒𝑟 − 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = 𝑔𝑥 > 𝑟ℎ𝑠𝑥 ... 25
Figure 3.10 𝑈𝑛𝑑𝑒𝑟 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = 𝑔𝑥 < 𝑟ℎ𝑠𝑥 .. 25
Figure 3.11 Graph showing possible route taken by AI using D* lite 25
Figure 3.12 Graph shows node X is now impassible .. 26
Figure 3.13 Updated graph with updated values ... 27
Figure 5.1 Basic Behaviour Tree Layout .. 29
Figure 6.1 Basic MARPO task layout ... 30
Figure 6.2 Order of priority in RTS games .. 31
Figure 9.1 Table of Quantitative vs Qualitative (Bell, et al., 2015) 34
Figure 11.1 Maze One Map .. 36
Figure 11.2 Maze One Results of Testing... 37
Figure 11.3 Map of Maze Two ... 37
Figure 11.4 Maze Two Results of Testing ... 38
Figure 11.5 Map of Decadence from Hotline Miami (Dennaton Games, 2013) 39
Figure 11.6 Results of Testing Decadence .. 39
Figure 11.7 Map of No Talk from Hotline Miami (Dennaton Games, 2013) 39
Figure 11.8 Results of Testing No Talk .. 40
Figure 11.9 Map of Metro from Hotline Miami (Dennaton Games, 2013) 40
Figure 11.10 Results of Testing Metro ... 41
Figure 12.1 Decadence Heatmap with Dijkstra's Algorithm .. 42
Figure 12.2 Decadence Heatmap with A* ... 43
Figure 12.3 Decadence Heatmap With D* Lite .. 43
Figure 12.4 No Talk Heatmap with Dijkstra's Algorithm .. 44
Figure 12.5 No Talk Heatmap with A* ... 45
Figure 12.6 No Talk Heatmap with D* Lite ... 45
Figure 12.7 Motel Heatmap with Dijkstra's Algorithm .. 46
Figure 12.8 Metro Heatmap with A* ... 47
Figure 12.9 Metro Heatmap with D* Lite ... 47
Figure 13.1 Results of Question One of Questionnaire .. 48
Figure 13.2 Results of Question Two of Questionnaire ... 49
Figure 13.3 Results of Question Three of Questionnaire .. 50
Figure 13.4 Results of Ranking the paths .. 51

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 5 ~

Figure 13.5 Breakdown of Results of Ranking the paths ... 51
Figure 14.1 Maze Two Paths A*(Left) and D* Lite(Right) .. 53

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 6 ~

Abstract
In most games an Artificial Intelligent agent needs to be able to navigate a space quickly
and efficiently. To this end pathfinding has been driven to be increasingly more efficient
from the adaption of Dijkstra’s algorithm to the globally used A* and not just in games
robotics and GPS navigation have all adapted the use of pathfinding. However, unlike
robotics and real-world navigation, agents in games need to appear intelligent to the
player meaning the believability of the path taken needs to be considered. This must
mean that for a path to be considered acceptable the algorithm must satisfy two criteria:
efficient and believable. An investigation into several pathfinding algorithms were tested
for their believability and efficiency but also what a player deems to be believable, this
included getting players to navigate the same maps to compare to the pathfinding
algorithms. To ensure a range of algorithms were tested both static and dynamic
algorithms were included those being: Dijkstra’s Algorithm, A* and D* Lite with the results
showing that despite the enhancements made to the algorithms the environment has as
much of an effect on the algorithm as the efficiency of it.

Introduction
The nature of game Artificial Intelligence (AI) is to find that sweet spot of intelligent
behaviour, believability and fun for the player, creating AI agents that are too smart or
challenging for the player can disrupt the experience of the game while creating AI that
cannot react to obstructions or player actions can also ruin immersion. Many games
today use the A* pathfinding algorithm to navigate an environment, due to its
effectiveness at navigating around static obstacles. However, as A* calculates a path
based upon the environment at the time, if presented with a dynamic obstacle it’s
possible the AI will become stuck and without any way to react to it or break out of the
path its currently following. This could cause an agent to constantly walk into an obstacle
indefinitely ruining the believability of that agent. But navigation is only one half of the
reactive coin, should an obstacle appear it is one thing to recalculate the path around it
but a completely different problem if the player has locked a door and the only way
through is to find the key that opens it.

There are a few pathfinding algorithms that have been developed in order to tackle this
problem, the likes of D*, Dynamic A*, LPA*, Lifelong Planning A* and D* lite, have all
achieved this in some way by recalculating parts of the path in front of the agent when
the path has become blocked rather than starting again from the agents position to the
goal. This iteration over the current viable path prevents unwanted computation time of
a complete recalculation which when expanded on too many agents in a game can take

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 7 ~

time away from other key areas such as physics calculations for graphic rendering
(Roberts, 2022).

To make an AI feel more life-like and believable then the agent needs some way to react
to the goings on in the world, planning a path is one thing but if the agent tries to travel
through a door that is locked by the player without something stopping the AI following
the current path the agent will continue to try and walk through the door. This means that
the agent needs a way of not just planning but also to react to the new scenario in front
of it, for this reason more advanced ways of decision making than Finite State Machines
(FSM) need to be utilised where the agent will be allowed to break out of the current task
and follow the new higher priority task. This also means that a series of goals need to be
established so that the tasks can be order based upon the goals of the agent.

Aim and Objectives
AI agents can navigate a space in many ways, from the simple and static methods to the
more complex dynamic and reactive approaches that will allow the agent to adapt to an
environment prone to changing. The goal will be to determine how an AI agent can
navigate a space dynamically and efficiently with considerations of believability and
computational outcomes.

• Multiple areas of pathfinding and decision making will be explored including their
origins to ensure all understanding and conclusions are based upon correct,
current and fundamental knowledge.

• How player interact and immerse themselves in games will also be researched to
help formulate the methods in which the research done can be tested against.
This will include understanding how a player will move through the same space
the agent does to compare their routes.

• A simulation will be built using the information gained to determine a believability
vs efficiency cost comparison and determine which method proves more cost
effective.

To ensure all aspects are overviewed sufficiently future work and areas for potential
development will be outlined and areas that might offer improvements will be
considered.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 8 ~

Literature Review

How AI has Changed
Since some of the first video games created, AI has played a major role in providing
immersion and challenge for the player (Dill, 2013). From the simple two state systems
used in Pac-Man (Namco, 1980) to the highly complex AI Director and Behaviour Tree’s
utilised in Alien: Isolation (Creative Assembly, 2014) AI in games has always aimed to
engage the player.

AI in games has been used for multitude of purposes from creating fun and engaging
enemy agents that act as a barrier for the players progression to companions designed to
assist the player or provide some story elements (Dyckhoff, 2017; Millington, 2019). Most
agree that the underlining principle to create compelling and engaging AI agents is the
illusion of intelligence, taking an object in the game and bringing it to a semblance of life
in the eyes of the player can make or break a games AI (Rabin, 2017; Roberts, 2022).

Creating the illusion of intelligence is a delicate balance, develop an agent that is it too
intelligent and the game might engage the player into new strategies, or become too
challenging for the player to enjoy. Opposingly designing a dumb agent can add
personality to a game or break the immersion and ruin the experience (Roberts, 2022;
Bourg & Seamann, 2004). Preserving a games immersion is key in allowing the player to
experience the flow state. The Flow state or Flow is a psychological effect that describes
a pleasurable immersion experienced by a player (Soutter & Hitchens, 2016).

The eight components of Flow

- Clear Goals
- High Degree of Concentration
- Loss of Self-reflection
- Time Distortion
- Direct and Immediate Feedback
- Sense of Personal Control
- Intrinsically Rewarding
- Balance between Ability Level and Challenge

It is clear from this list that Flow is an intrinsic value baked into many games, challenging
fights, quest rewards and direct personal control makes it easier for games to maintain

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 9 ~

the flow state for long periods of time (Soutter & Hitchens, 2016). However, this benefit
also means that once broken it can prove difficult to restore.

This pretence of sentience has permeated games since players were shot at by aliens in
Space Invaders (Tatio, 1978) while the AI design was simple it demonstrated intelligence
through seemingly coordinated attacks. The enemy ships moved and acted together
always advancing on the player, seemingly working to a strategy and together while not
having the capability to do so (Rabin, 2017). This simple yet effective design exploded the
popularity of AI in games but also in complexity allowing an AI agent to navigate an
environment using pathfinding techniques, or chase down a player using steering
behaviours as seen in Doom (id Software, 1993) and The Elder Scrolls II: Daggerfall
(Bethesda Softworks, 1996). This adaption of pathfinding algorithms changed how the
player interacted with the game, creating unique combat encounters that challenge the
player rather than memorising patterns (Thompson, 2024).

Creating agents that can challenge the player through seemingly intelligent tactics was
not the only avenue of adaptability explored for AI, both Left 4 Dead (Valve South, 2008)
and Alien: Isolation (Creative Assembly, 2014) utilise an AI director that controls how the
AI will react but both use this director in very different ways. Left 4 Dead keeps track of
how the game is currently progressing based upon preplanned parameters such as the
players progression speed, the quicker they progress the more enemies are spawned and
if the players seem to be having difficulties progressing less enemies or less special
enemies maybe spawned (Thompson, 2024). Alien: Isolation uses the director method in
a much more targeted way, rather than having the director control numerous enemies at
any point, it oversees one agent. Using a two-pronged approach, one is the agents AI
brain containing a Behaviour Tree for the agent including, but not limited to, pathfinding
and how the alien might search a room. Meanwhile the director has full knowledge of the
current game state, always knowing where the player is and feeding the alien information
based upon if the player has gone too long without an encounter it keeps track using a
menace meter, should this menace meter become full then the director will send the
player to a different area giving the player a brief respite (Thompson, 2017). This ability to
adapt to the player’s actions gives the sense that the AI is a living entity that not only has
intelligence but can learn how to beat the player, improving the immersion and fun of the
game without creating an AI that is unbeatable (Rabin, 2017).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 10 ~

Pathfinding
Pathfinding or Path Planning is a commonly used method of navigating, a practice that
can be observed in the real world. Humans will find paths based upon what they know
about their environment and maps they have created in memory (Rahmani & Pelechano,
2021). Computer games operate differently, without the human aspect of navigation such
as memory, orientation and personal bias (Rahmani & Pelechano, 2021), AI takes what it
knows to be fact about its environment, this can be checkpoints or a fixed path that is set
by the designer, or information contained in the navigation mesh that could include what
is traversable and what is not (Millington, 2019).

Spatial Representations

To give an agent the ability to see the environment must first be split into navigational data
that informs the agent of its surroundings (Green, 2024). The simplest method is to divide
the search space into a grid of nodes that hold whether they are traversable or not
(Roberts, 2022). Turning the environment into a grid works well for 2D environments
however, 3D environments more information may be needed to accommodate the
additional dimension, i.e. jumping or crouching (van Toll, et al., 2016). Nav Meshes can
bridge this gap by converting the environment into cubes in a process called voxelisation
and assessing areas that are traversable in the space (Brodén & Bohlin, 2017).

1. Dijkstra’s Algorithm

In 1959 a Computer Scientist by the name Edsger W. Dijkstra aimed to solve the shortest
path theory when attempting to navigate a graph or tree by traversing between the nodes
(Millington, 2019). Dijkstra took the understanding that a tree is built by creating a path
from a parent node to its child when instantiated, this limitation of one path between two
nodes allows the navigation from any node on the tree to the other (Dijkstra, 1959). Figure
1.1 shows a simple binary, to navigate the tree the search there are two basic search
algorithms Depth first and Breath first. Both searches will start at the root node(A) and if
Depth first will travel to the lowest node, it can on the left side before moving to the right
making the order of nodes searched A, B, C, E, F, D, G. Breath first travels across from left
to right before exploring further down the tree, this would make the order of the search A,
B, C, D, E, F, G. Dijkstra algorithm looks to navigate the tree differently, by utilising the
single path between each node traversal from node G to node C moves along two nodes
to arrive at the destination (Dijkstra, 1959). It is important to note that using Dijkstra’s
algorithm from G to C the path from B to A will also be searched as it must be confirmed
to not be C before is discounted.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 11 ~

Figure 1.1 Simple Binary Tree

While Dijkstra’s algorithm works for binary trees its real potential is shown in navigating
graphs Figure 1.2 shows a very simple search space graph structure following the rules
laid out by Dijkstra, each node must have one and only one connection to each other
node (Dijkstra, 1959). To navigate from node A to node D in figure two there are two
possible routes to take A->B->D or A->D while it is easy to visualise the shortest path as
being straight from A to D computers cannot differentiate between the two Dijkstra’s
Algorithm solves this by evaluating the cost of the path taken taking the shorter one and
deleting the longer ones (Millington, 2019). AI in games use Dijkstra’s shortest path
algorithm by treating the environment as a graph, this can be done by splitting the game
space into a perfect graph, creating waypoints or using a nav mesh, to demonstrate this
take Figure 1.2 and imagine it describing key points on a map, F might be inside a building
or A might be a bridge, if the AI agent is currently standing on node E how would it get to
node G? Dijkstra’s Algorithm provides a way of navigating the world and will supply the
shortest path between the two nodes, however, is not without drawbacks (Roberts,
2022).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 12 ~

Figure 1.2 Basic Search Space Graph containing several nodes.

The first and biggest drawback of Dijkstra’s algorithm is also its biggest attraction, it will
find the shortest path no matter what this includes checking in all directions until the path
is found (Roberts, 2022). A path from B to H will need to visit nodes C, D, and E regardless
of the direction of H, once the path is found the incorrect paths will be discarded but after
they have used up processing resources (Millington, 2019). This method of searching is
known as an Undirected Search, there is no choice in which direction the algorithm will
search in and has the potential of searching the entire tree before finding the path
(Roberts, 2022).

2. A* Pathfinding

Dijkstra’s algorithm used a mathematical approach to finding the shortest path, its aim is
to find the shortest path no matter the cost, A* (A-star) built upon this by combining this
method with a heuristic approach, this, unlike Dijkstra’s algorithm, allows A* to be a
directed search approach giving the algorithm a general direction to travel in (Hart, et al.,
1968; Roberts, 2022).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 13 ~

Heuristics

A* being able to direct its search limits the paths searched, increasing its efficiency while
searching the games environment for the fastest path. Unless the path is a not viable, A*
does not discard any nodes, using a best first search it searches through the nodes that
take the path closer to the end (Liu, 2023). To aim the search in the direction of the goal
A* uses Heuristics (Greek: ‘to find’) to guide which node is best by estimating the cost
from each node to the end when calculating the cost of the next step. If the cost is the
lowest in the nodes around the current point, then this path is searched first as the ‘best’
as it is moving in the right direction (Airlangga, 2024).

The type of heuristic used can affect the outcome of the path based upon the answer
returned (Roberts, 2022). Changing the games environmental layout to match the
heuristic may provide a better outcome; Manhattan tends to favour four neighbour nodes
whereas Octile operates better with eight neighbours (Rivera, et al., 2020).

Heuristics tend to fall into two categories perfect and admissible. Perfect heuristics,
denoted h*, dictate that the value of each node on the path is the true cost-to-go
expressed in figure 2.1 (Kirilenko, et al., 2023).

ℎ ∗ (𝑛) = 𝑐𝑜𝑠𝑡(𝜋 ∗ (𝑛, 𝑔𝑜𝑎𝑙)) 2. 1

The heuristic is called admissible if it never overestimates the true go-to-cost for each
node, expressed in figure 2.2, this style of heuristic in use with the A* algorithm is widely
accepted to find the best solution to a closed grid (Kirilenko, et al., 2023).

ℎ(𝑛) ≤ ℎ ∗ (𝑛) 2. 2

Manhattan Heuristic

The Manhattan approach is one of the most common heuristics used in pathfinding,
taking its name from the Manhattan borough of New York. Manhattan imagines the
environment as city blocks taking the absolute distances in the axes to estimate the
distance needed to arrive at the end point (Roberts, 2022; Guo & Luo, 2018). Manhattan
Distance expression shown in figure 2.3.

ℎ(𝑛) = |𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙| + |𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙| 2. 3

Euclidean Heuristic

Euclidean distance uses trigonometry to calculate the exact distance between the start
and end points. The distance estimate being the hypotenuse of the triangle created by

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 14 ~

using Pythagoras’ theorem on the x and y distances from start to end position (Roberts,
2022; Guo & Luo, 2018). Euclidean Distance expression shown in figure 2.4.

ℎ(𝑛) = √(𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙)
2

+ (𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙)
2 2. 4

Octile Heuristic

Octile distance is a variation on the Manhattan heuristic it takes the same distances but
multiplies the shortest distance by 0.41 adding it to the longest. This heuristic is best
used on a grid and is the most accurate on one as Manhattan will tend to overestimate
and Euclidean will underestimate distances. Assuming that diagonal and orthogonal
movement is allow the angles of movement align with the 45- or 90-degree angles that
octile prefers (Rabin & Sturtevant, 2013). Octile Distance expression shown in figure 2.5.

ℎ(𝑛) = 𝑚𝑎𝑥 ((𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙), (𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙)) + 0.41 · 𝑚𝑖𝑛 ((𝑥𝑛 − 𝑥𝑓𝑖𝑛𝑎𝑙), (𝑦𝑛 − 𝑦𝑓𝑖𝑛𝑎𝑙)) 2. 5

The A* Algorithm

Although the A* algorithm did not originate in the games industry it has found its place as
the most popular when it comes to calculating a path with the real-time demands of
games (Liu, 2023). A*’s popularity has also expanded in the world of robotics (Lim, 1968),
to Evacuation planning (Ji & Gao, 2007), A* has been implemented and adapted to fit a
multitude of scenarios.

The equation used to calculate the total cost of the A* algorithm is shown in figure 1.6,
where ƒ denote the final cost of the node calculated by taking the computed cost so far,
g(x), added to the heuristic guess form the node to the end, h(x) (Roberts, 2022).

𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) 2. 6

Directed Weighted Graph

As with Dijkstra’s algorithm the environment space needs to be represented as a graph-
like structure (Schoener, 2024), Figure 2.7 shows a modified version of the search space
graph in figure 1.2, called a directed weighted graph where the cost between each node
has been added. Still thinking of the graph as a game map the numbers between the
nodes can be increased to show the cost to move between the two, in game this can
represent different terrains i.e. if the path goes through water, it would be more difficult
to navigate then the road (Bourg & Seamann, 2004).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 15 ~

Figure 2.7 Directed Weighted Graph

To navigate between node A and node E there are multiple routes that can be taken,
notably A->B->E is the shortest in number of nodes traversed and the cost of moving
between each node. The directed weighted graph can highlight the advantages of using
heuristics A* will first look through the cheap nodes and adding them to the open list. In
this case the cheapest nodes to travel to are D and H both having the travel cost of 2. It is
at this point the heuristic calculation will inform the pathfinding that its heading in the
wrong direction, thus, redirecting the search to B and closer to the goal (Rafiq, et al.,
2020).

Open and Closed Lists

To allow A* to search the grid, it needs to have some way to ‘look around’ and then
evaluate the results. A* and Dijkstra builds up information about its environment using
open and closed lists, the open list contains the frontier, nodes which have yet to be
explored but are known, initially the closest to the current node, and the closed list,
nodes that have already been explored (Lester, 2005). Figure 2.8 shows a simple grid the
green square at the centre indicates the current or starting node and the blue squares,
containing the numbers, immediately surrounding it are the frontier, and finally the red
showing the goal.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 16 ~

Figure 2.8 Grid with a starting node (in green) and the frontier nodes (in blue)

1. The start node is switched to the closed list, as it has now been explored.
2. The frontier is expanded, for this example the first node explored will be the square

marked 0, right above the start node.
3. The frontier around this node is then explored, any nodes found not already on the

open list are added with the current node as the parent and any on the closed list
or unwalkable, i.e. walls, are ignored.

4. The nodes that are already on the open list are checked against the current node
to determine which is better, comparing node 1 to the current node 0, node 1 is

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 17 ~

closer and is cheaper to move straight there rather than going up to 0 then across
so node 1 becomes the current node.

5. The new currents frontier is explored.
6. Repeat steps 3, 4 and 5 until the goal is found.

Figure 2.9 outlines this process in pseudocode (Roberts, 2022; Cui & Shi, 2010; Lester,
2005).

Figure 2.9 Pseudocode of A*

Dijkstra vs A*

Understanding how A* utilises heuristics the comparison between A* and Dijkstra’s
algorithm becomes more understandable. The inability to limit the direction of searching
using heuristics leads to a lot more nodes explored, and calculations done. Figure 2.10
shows an example of Dijkstra’s algorithm and A* looking for the same goal, A* using
Manhattan heuristics, created using Pathfinding.js (Xu, 2023).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 18 ~

Figure 2.10 Dijkstra’s algorithm vs A* created in Pathfinding.js1 (qiao, 2023)

While the path is simple the difference between the two show the major advantages of
A* and with games aiming for 60 fps (Frames Per Second) (Madhav, 2018) saving 1.1ms
per path calculation can really add up.

3. Dynamic Pathfinding

The consensus deems A* as the backbone of pathfinding, with many focusing on how to
optimise A* over reinventing the wheel (Bourg & Seamann, 2004). One avenue of
optimisation is adapting A* to work in a dynamic environment, as explored standard A* is
an improvement upon Dijkstra’s, but they are both limited to static environments, using
A* in a changeable environment can lead to agents becoming blocked or stuck with the
only solution being recalculating the entire path from the new position (Mäntysalo, 2024).

In a best-case scenario, the entire environment is known and static meaning the path
only needs to be calculated once, for this situation A* works well. However, in the world
of exploration robotics the entire environment cannot be fully known, and obstacles
encountered make the current path invalid (Stentz, 1994). This forces the path to be
recalculated leading to inefficiencies that can grow exponentially depending on the

1 Pathfinding.js [https://qiao.github.io/PathFinding.js/visual/]

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 19 ~

number of obstacles encountered and amount of information about the area to begin
with.

D* Algorithm

In 1994 research professor Anthony Stentz proposed a solution to dynamic or unknown
environments, using their role in the field of robotics, A* cannot adapt on the go, once the
path is formed new information will not alter the current path until the robot became
stuck and a new path with the new information could be calculated. A dynamic solution
was proposed based upon the A* algorithm but rather than being set once the solution
would recalculate the problem nodes, that have changed, as new information is
collected rather than recalculating the entire path, thus gaining its name D* or Dynamic
A* (Stentz, 1994).

D* uses two main methods PROCESS-STATE, calculates the best path cost to the
destination and MODIFIY-COST, used to change the cost of the current arc and reinsert
the node onto the open list (Stentz, 1994). Unlike A*, D* works backwards from the
destination to the start point, PROCESS-STATE is constantly called until the start is found
and using the back-pointers of each node travelled through creates a path, this is very
similar to the method used by A* to find the path. The algorithm for PROCESS-STATE can
be found in figure 3.1.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 20 ~

Figure 3.1 Algorithm for PROCESS-STATE in D* algorithm (Stentz, 1994)

In MODIFIY-COST, shown in figure 3.2, the cost of traveling to the node is changed thus
making the path incorrect adding X back into the open list to be re-explored in the
PROCESS-STATE function, the new heuristic cost is then calculated for Y then adding Y
to the open list allows the cost to be pass onto the child nodes of Y effectively ‘fixing’ the
path with the new information (Stentz, 1994).

Figure 3.2 Algorithm for MODIFIY-COST (Stentz, 1994)

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 21 ~

While D* is similar to the A* in how it approaches finding the path D* drastically changes
the primary function of A*, the shortest path is no longer the definitive answer to the
problem rather D* looks for all paths to the goal, this allows paths to me modified rather
than calculated in the moment an obstruction is encountered (Murphy, 2000). D* is
known as a continuous re-planner whenever an obstacle is detected the path will be
recomputed, in robotics this issue can present as a phantom reading, the obstacle does
not actually exist but due to an instrument misreading the surroundings, potentially
making the path recompute twice, first due to the obstacle and second due to no
obstacle (Murphy, 2000). D* also uses two extra identifiers for when the path needs to
change, RAISE, for when a node is more expensive then is was last time it was in the open
list, and LOWER, for when a node is cheaper than is was last time, limiting the number of
nodes that need to be rechecked (Reeves, 2019).

Figure 3.3 shows a table of results from a study done using pathfinding to solve a maze
(Barnouti, et al., 2016), it shows that in this case D* visits significantly less nodes when
finding the path and the execution time is on average faster than that of A*.

Figure 3.3 Average time to complete paths for A*, Dijkstra's algorithm and D* (Iskanda, et

al., 2020)

While Figure 3.3 shows that D* tends to be more efficient than A* it’s important to note
this is just one study figure 3.4 demonstrates the complexity of both algorithms
responding to several obstacles. Increasing the number of obstacles in the scene the
increases the complexity of A* becomes but decreases the complexity for D*. The use
cases of each algorithm are dependent on the desired outcome a more static
environment will hinder the advantages of using D* but make A* more attractive.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 22 ~

Figure 3.4 comparing the time complexities of A* vs D* (Reeves, 2019)

Lifelong Planning A*

Created to solve the dynamic problem with A* for real world robotic applications makes
D* difficult to justify in a game environment, mainly the first step of the algorithm is to
calculate all possible paths to the destination this level of computation can be
completed before the robot sets off. However in games each frame be completed in
16ms, while there are potential ways to navigate this issue, computing the paths over
multiple frames, this will make the AI feel slow to react or the frames to drop both creating
negative results (Murphy, 2000). Lifelong Planning A* (LPA*) limits the amount of
computation by using heuristics to guide the shortest path and only recalculate the path
on nodes that have changed, but also using the A* method once the shortest path has
been found stop searching, this includes changed nodes (Koenig, et al., 2004).

LPA* uses the same method utilized in DynamicSWSF-FP by taking each nodes g-value,
from A*, and rhs (right-hand sides) value, which informs the look ahead value by taking
the smallest g-value of its neighbours plus the distance to get there, when these values
match the node is called locally consistent (Koenig, et al., 2004). To know a path has
become blocked the node is checked to be locally consistent, this can be done by
checking if the g-value matches the rhs-value, if an inconsistency is detected the
pathways of that node is recalculated to match again (Koenig, et al., 2004).

Mathematical Representations

To fully understand how the LPA* algorithm calculates its path is important to understand
the maths behind the starting distances. Letting S represent the entire graph with finite

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 23 ~

vertices, then succ(s) ⊆ S shows the set of successors of s ∈ S (s ‘element of’ S), equally
pred(s) ⊆ S shows the predecessors. Figure 3.5 shows the cost of moving from s to s’ ∈

succ(s) (Koenig, et al., 2004).

0 < 𝑐(𝑠, 𝑠′) ≤ ∞ 3. 5

Figure 3.6 shows the start distance equation from sstart to s represented by g*(s).
essentially stating that any node that is not the start must have a starting distance that
satisfies the equation, being the minimum cost between current and next node (Zarembo

& Kodors, 2013).

𝑔 ∗ (𝑠) = {
 0 𝑖𝑓 𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡,

𝑚𝑖𝑛𝑠′ ∈𝑝𝑟𝑒𝑑(𝑠)(𝑔 ∗ (𝑠′) + 𝑐(𝑠′ , 𝑠)) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 3. 6

Reducing the number of nodes that need to be searched lowers the demand of
pathfinding, in games where most of the calculation time may be needed elsewhere it is
crucial to be as efficient as possible. LPA* does this two ways the first incrementing over
what the original pass searched, meaning every node in the game space is not searched
again, the second is to only expand upon nodes that are now locally inconsistent
reducing the number of changes to the nodes that have been altered (Koenig &

Likhachev, 2001).

Figure 3.7 shows the number of nodes expanded on a first pass and if the environment
changes respectively, in which its clear just bey the visual representation of the nodes
that should the environment change the LPA* is more effective.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 24 ~

Figure 3.7 First and second pass pathfinding search (Koenig, et al., 2004)

D* Lite

D* lite was conceived as an improvement upon the LPA* algorithm but rather than
searching from the start node D* lite begins at the goal node and works backwards, this
makes the g-values goal distances rather than start distances (Koenig & Likhachev,

2002). Due to the incremental nature of the search the root node must remain the same,
the goal being a fixed point makes it the perfect for this over the ever-changing position
of the agent (Uzoeghelu, 2021).

Just as LPA* requires node to be locally consistent D* lite nodes can have one of three
statuses Consistent, Over-consistent and Under-Consistent based upon them satisfying
figure 3.8, 3.9 and 3.10 respectfully.

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = 𝑔(𝑥) == 𝑟ℎ𝑠(𝑥) 3. 8

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 25 ~

𝑂𝑣𝑒𝑟 − 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = 𝑔(𝑥) > 𝑟ℎ𝑠(𝑥) 3. 9

𝑈𝑛𝑑𝑒𝑟 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 = 𝑔(𝑥) < 𝑟ℎ𝑠(𝑥) 3. 10

If any other than consistent is true the node is re-explored and updated with the new
values (Uzoeghelu, 2021).

Figure 3.11 shows a very basic graph with a path an agent might take using D* lite. Firstly,
it is key to remember that the goal note will have the g and rhs values of zero, due to D*
lite’s backwards search method where the path will propagate from the goal to the start.
Second each diagonal step has been given a cost of 1.4 making it slightly easier to travel
diagonally then travel only orthogonally. The arrows denote the path computed by the
algorithm and if the game environment stays would also be the one followed.

Figure 3.11 Graph showing possible route taken by AI using D* lite

However, if the agent gets to node K to find X is non-negotiable, shown in Figure 3.12, the
value is updated making it locally inconsistent and added back onto the open list. From

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 26 ~

the open list the walkable neighbours are explored, recalculated and a new path found
based upon them, shown in Figure 3.13 (Koenig & Likhachev, 2002).

Figure 3.12 Graph shows node X is now impassible

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 27 ~

Figure 3.13 Updated graph with updated values

The nodes coloured orange, in Figure 3.13, show the nodes added to the open list as part
of the recalculation, nodes B, N, M, V and K, show the new values after the expansion,
again as the algorithm starts at the goal and works to the current position the updated
values are relative to the goal increasing the cost the further away it becomes. The agent
now just follows the path again until either the goal or an obstacle is found (Koenig &
Likhachev, 2002).

D* lite eclipses the original D* with its simplicity and robustness reducing D*’s many
nested statements into a clean one breakout condition and merging with A* efficiency
(Koenig & Likhachev, D*Lite, 2002; Wooden, 2006).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 28 ~

Planning
Pathfinding is only one aspect of AI, while its important for the agents to successfully
navigate the environment they are in there are other factors in game that might dictate
behaviours. Agents may need to attack the player, interact with an object or investigate
an area, without some kind of criteria to change the current goal, agents will be forced
into completing the current task before searching for the next objective with no fluidity
between them.

4. Finite State Machine

Finite State Machine (FSM) are a simple way to give an AI agent the appearance of making
decisions. The behaviour of the agent needs to be defined, the original way to achieve
this was to clearly define the states the AI could belong to, for example Attack, Flee or
Heal that will dictate the behaviour of the agent (Millington, 2019). Once the states the
agent could be in are defined the states need to have clear transitions, this could be an
arbitrary value like spotted the player or use a curve to calculate how confident the agent
is to attack (Wooldridge, 2024). However, due to the simple nature FSM’s can suffer from
state thrashing where the agent operates on the borders of transition and flicked between
two states. For example, if the requirement to attack is the player is close enough to the
player and the player is running away then the agent might try to attack, lose too much
ground and transition to the chase state, catching up to the player at which point the
agent will transition to attack and the cycle begins again.

5. Behaviour Trees

FSM’s are extremely ridged and dictating that an agent can only be in one state at a time
can cause state thrashing, where the agent is on the bounds of two states and will flicker
between the two and not make a decision, as expected this can be jarring to the player
breaking the immersion and fun of the game (Isla, 2005). Behaviour trees were developed
as an improvement on the FSM creating a tree of behaviours that can be navigated based
upon the agent’s needs. Each time the agent acts the

 this involves navigating through composite nodes, controlling the type of execution,
Instruction nodes, control the flow back up the tree, and leaf nodes, the behaviour or task
nodes (Roberts, 2022).

Figure 4.1 shows a basic Behaviour Tree layout with the different types of nodes. There
are variations of composite and instructional nodes, each one designed to control the
flow of decisions in different ways. Leaf nodes are the end of the branch, they cannot

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 29 ~

have any child nodes and contain the behaviour that is to be executed by the agent
(Champandard & Dunstan, 2013). Instructional, also called Decorator, nodes can only
have one child and can override the returned value from the leaf node, this could be
inverting the result changing the success to failure or failure to success, or repeatedly
calling the child node until a criterion is met. Composite nodes can have multiple child
nodes and controls the execution of them, for example the selector composite node will
execute all child nodes until one returns a success or all nodes have completed, whereas
a sequence node will execute until the child nodes return a failure (Roberts, 2022;
Millington, 2019).

Figure 5.1 Basic Behaviour Tree Layout

Many Behaviour Trees share data between other trees using a Blackboard, this mean that
data set in one tree can be used in another without having to pass the data between them.
Blackboards achieve this be using a one to many relationship to allow many trees to be
associated with the blackboard but only one blackboard for each tree this would allow AI
agents that share a type could utilize the same data without duplicating many trees
(Rallabandi & Roberts, 2024).

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 30 ~

6. Reactive Behaviour Trees and MARPO

The goal of Behaviour trees is to improve upon the limited state of FSMs and give agents
more adaptability however, in games the AI might need to react to new information, after
taking a significant amount of damage attacking the player is no longer the priority but
until the action is complete and the area reassessed then the agent might not heal. This
all stems from the fact behaviour tress are natively not reactive, if an event is to be
handled, the conditions leading up to it must be in the tree, leading to bigger and bigger
trees that become difficult to debug (Rallabandi & Roberts, 2024). Reactive behaviour
trees solve this by utilising some of the aspects of MARPO, Movement, Avoidance,
Routing, Planning and Orders specifically the multiple stacks or queues to handle tasks,
one to handle long-term planning events and one to handle any reactive or priority events,
while not limited to just two data structures reactive Behaviour trees tend to use two
(Rallabandi & Roberts, 2024).

MARPO takes the idea that task inherently have different priorities depending on the
scenario and using different stacks plans for them. The example in figure 5.1 involves
three stacks the first being the idle stack, the lowest priority, will contain the default
behaviour of the agent, the action stack, the middle priority, contains the current tasks
being carried out informed by the default behaviour in the idle stack. The final stack is the
reactive stack and at the highest priority any tasks in this stack will be completed before
anything else and only when empty will the agent return to its action stack (Bull, 2024a).

Figure 6.1 Basic MARPO task layout

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 31 ~

As can be seen in figure 5.1 there is currently a task in the reactive stack that has become
the active task disregarding what the agent was doing previously, these reactive tasks can
come from anywhere in the program and is not limited to dangerous situations, it could
be that the AI heard a noise and needs to investigate before returning to their default
state. It’s also important to note that if the reactive task is empty and all action tasks
complete the idle stack will execute it’s task which adds the work task to the action stack
the work task then adds the commute to work task, essentially adding the goals required
to complete that task to the stack (Bull, 2024a).

This reactive method has also been adapted for the use in simulations and Real Time
Strategy (RTS) games by treating the stacks as a chain of command can inform the
behaviour that is added to the stack. Figure 5.2 outlines how the stacks can be labelled
for an RTS making the players actions the most important cements the feeling of
command over the army, with the idle and action stacks breathing life into the agents
(Bull, 2024a).

Figure 6.2 Order of priority in RTS games

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 32 ~

7. Automated Planners

There have also been attempts to automate the process of planning actions to allow the
AI agent to use the best strategy based upon the decisions that can be made, the most
famous automated planning is Goal Oriented Action Planning (GOAP) (Condò, 2024).
GOAP works on the premise of finding the best sequence of actions that will satisfy the
agents long term goal, while a very compelling choice when it comes to AI planning GOAP
has two major flaws the first being the number of possible combinations of actions, a
naïve GOAP has the notation of O(nmk), the solution will take too long to provide an
answer. The second is caused by creating a sequence of actions to take without
considering the changing environment, this forces the agent to follow the actions without
checking that the next action is still available (Millington, 2019; Condò, 2024).

Each of these decision-making architectures are designed to make agents reacted more
dynamically; to appear intelligent to the player however, the level of reaction is
determined by the overall vision of the game. These methods are also not isolated and
can be combined for the desired behaviour, a simple FSM can become more reactive if
merged with MARPO and the current state can be interrupted by a higher priority state.

Research Methodologies
To test how well an agent can navigate a changeable environment different pathfinding
algorithms will be compared in different scenarios. The success rate of the pathfinding
algorithms and planning method will be determined by how they satisfy these criteria:

- How efficiently a path can be found in several scenarios both static and dynamic.
To draw conclusions from the testing different scenarios will be explored removing
the bias of testing algorithms in areas that are not favourable against ones
designed to solve that problem.

- How believable the paths taken are to participants. To test for believability
participants will be asked to mark the path they would take to get from a start goal
to the end goal, these entries will be correlated into a heat map, the path taken by
the agent will be overlayed and given a score based upon how closely it matches.

- How adaptable the AI is when faced with an obstacle. It is important to this study
of how the AI will react when met with an obstacle, be it player controlled (Locked
Door), dynamic (Moving wall) or unknown when the path is calculated.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 33 ~

8. Artifact Creation

The artefact will be created using the SDL22, due to the level of control offered by the C++
library without focusing on the graphics pipeline. The game space will be split into a grid
where each node can be given a cost to navigate, this approach will allow all pathfinding
algorithms selected to function in the space with little to no modification, it also means
that any map chosen or created can be easily divided into a uniform and repeatable
pattern. Ensuring the overlaying of the map is repeatable is important for ensuring the
tests are unbiased as with waypoints the placement depends on the goals and desires of
the game, this might favour more open areas or obstacles and can affect a repeated test.
Maps will be selected from Hotline Miami (Dennaton Games, 2013) to give a real example
and generated mazes to test the algorithms computational power.

Testing which pathfinding method is best will involve incorporating several algorithms
some which are designed for a static environment and ones created to be more dynamic
to encompass a full range, the algorithms selected are Dijkstra’s algorithm, A* and D* lite.
Starting with Dijkstra's algorithm will be a good baseline for testing the effectiveness of
the following methods, A* has been a staple in pathfinding for many years and should set
the bar for the others, D* lite aimed to improve upon the workings of LPA* using an
incremental search to deal with currently unknown obstacles. Exploring a range of
different algorithms will also be important for testing the believability of the path found,
while it is important for the path to be found quickly and efficiently if the players
immersion is broken it has failed in believability.

9. Testing and Results

To fully test the outcome of the pathfinding methods both computational data and
optional data will be collected. Computationally this will be done by measuring the time
taken for the path to be computed, completed and if needed recalculated.

The computational outcome will be processed into a data table showing a series of
quantitative data that can be directly compared with the other methods and definitively
answer which algorithm is best in the categories tested. However just using quantitative
data only reveals half the picture as seen in figure 8.1 the table shows that quantitative
shows the hard values through the eyes of the researcher, while qualitive shows the
experience of the participant and when testing the path taken if a player does not find the

2 SDL2 – Simple Directmedia Layer 2 [https://www.libsdl.org/]

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 34 ~

path believable or it breaks immersion the speed in which the path has been found is
secondary (Graue, 2016).

Figure 9.1 Table of Quantitative vs Qualitative (Bell, et al., 2015)

To test where the path is believable the opinions of the player(s) must be considered, to
this end a survey will be created giving participants the option to express whether they
would take a given path or if they would find it believable. It is important to note that while
the player may take the path, they might not expect an AI agent to do the same and
conversely the path might be believable, but the participant would never go that way. The
survey will contain two parts the first will involve participants drawing on the maps the
path they would take from a given start to the goal. The results will be correlated into a
heat map and the AI paths overlayed to see how close the path taken matches with the
participants, by taking the nodes the participants travel through and calculating the
percentage of those the agent uses. The participants for this study will remain
anonymous but will have a background in game development, this maybe students,
lecturers or people in industry.

The second will be a basic questionnaire that allows the participant to express their
thoughts on how believable a given path is, for each of the pathfinding methods. This will
allow the participants to rate the paths the agent has taken on scale of how believable
they find it; they will then rate the paths against each other on which they would be most
likely to take. It is important that the participant completes the heatmap first as to not be
influenced by the paths seen in the questionnaire.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 35 ~

10. Interpreting the Data

Computational Data

To ensure a clear comparison between the pathfinding algorithms can be established, a
graph will be generated for each map showing the time taken to find the path on each
map. Each pathfinding algorithm will be invoked three time to establish a pattern and an
average taken to show which algorithm was fastest. With the goal of games to reach an
average frame rate of 60 a second it would be important to know which of the algorithms
implemented are the most efficient as taking too long to find the path may take the
method out of contention.

Questionnaire

To appropriately gauge the believability of the algorithms the participants results will be
used to create a series of graphs denoting the average believability score between one
and fiver. The higher the score will give the algorithm in question a higher consideration
when combined with the efficiency testing. An additional graph will be created based
upon the participants ordering of paths they would take, comparing this with the paths
they found believable the results may reveal differences between what is acceptable for
an agent to take vs what is expected when a player travels.

Heat Map

To compare the paths drawn by the participants to those taken by the AI a metric must be
established, overlaying all the paths taken for each map and marking against the path
found by the agent to determine how similar they are.

Results and Findings
Investigating the claim that dynamic pathfinding solutions can be used in games without
breaking the players immersion led to the creation of several charts depicting data
gathered.

11. Computational Results

Each map will adhere to the follow rules:

- All solid green squares are non-negotiable.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 36 ~

- Goal is denoted by the red square
- The blue square is the agent
- Orange squares show the path found

Figure 11.1 shows the first maze used for testing the time taken by each algorithm, due
to the simple nature of the maze only having one correct path though made it perfect for
comparing time taken.

Figure 11.1 Maze One Map3

The chart in Figure 11.2 show the timings each pathfinding algorithm took to navigate the
maze. Interestingly Dijkstra’s algorithm outperformed both heuristically driven
pathfinding techniques with and average time of 0.023ms and A* performing the worst
out of the three with an average of 0.046ms. Naturally as there is only one path to the goal
all three pathfinding algorithms found the correct path to the goal in an appropriate
amount of time.

3 AI Maze Generator [AI Maze generator]

https://ai-mazegenerator.com/?via=topaitools#generate

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 37 ~

Figure 11.2 Maze One Results of Testing

Figure 11.3 contains the map of maze two used for testing, similar with maze one the
there is only one route through the map. However, the start and end has been adjusted to
the middle of each wall on opposite sides.

Figure 11.3 Map of Maze Two4

4 AI Maze Generator [AI Maze generator]

https://ai-mazegenerator.com/?via=topaitools#generate

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 38 ~

The results of testing maze two are held in Figure 11.4 showing Dijkstra’s algorithm is the
fastest with an average time of 0.0064ms. However, unlike maze one D* lite proves the
slowest with an average of 0.041ms.

Figure 11.4 Maze Two Results of Testing

The first game map tested was Decadence from Hotline Miami (Dennaton Games, 2013)
shown in Figure 11.5, the start and end point of each game map remained the same
between the computational and participant testing.

0.005685
0.006542
0.006977

0.006401333

0.010992
0.01151

0.012752
0.011751333

0.04219
0.044023

0.037615
0.041276

0 0.01 0.02 0.03 0.04 0.05

average

average

average

D
ijk

st
ra

A*
D

*
Li

te

Milliseconds (ms)

Maze Two

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 39 ~

Figure 11.5 Map of Decadence from Hotline Miami (Dennaton Games, 2013)

Figure 11.6 shows the results from testing Decadence, in which the timing between the
algorithms is very similar with Dijkstra still proving the fastest on average with 0.07ms and
D* Lite being the slowest with an average of 0.086ms.

Figure 11.6 Results of Testing Decadence

The map bellow denotes the No Talk level from hotline Miami (Dennaton Games, 2013).

Figure 11.7 Map of No Talk from Hotline Miami (Dennaton Games, 2013)

0.079298
0.064227

0.067357
0.070294

0.078025
0.080493

0.082298
0.080272

0.083382
0.087273

0.088692
0.086449

0 0.02 0.04 0.06 0.08 0.1

average

average

average

D
ijk

st
ra

A*
D

*
Li

te

Milliseconds (ms)

Decedence

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 40 ~

Test No Talk shown in Figure 11.8 show A* to be significantly faster than the other
algorithms with the average time of 0.037ms and D* Lite the slowest with an average of
0.087ms to find the path.

Figure 11.8 Results of Testing No Talk

The Metro map is shown in Figure 11.9.

Figure 11.9 Map of Metro from Hotline Miami (Dennaton Games, 2013)

0.051717
0.0672267

0.052967
0.057303567

0.03498
0.039722

0.03687
0.037190667

0.084702
0.08805

0.08705
0.086600667

0 0.02 0.04 0.06 0.08 0.1

average

average

average

D
ijk

st
ra

A*
D

*
Li

te

Milliseconds (ms)

No Talk

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 41 ~

The chart in Figure 11.10 shows that for Metro D* Lite was the fastest with an average of
0.081ms and A* was the slowest with an average of 0.13ms.

Figure 11.10 Results of Testing Metro

12. Heatmap Results

All participants routes are marking in white in the following maps with nodes outlined in
orange representing nodes searched by the algorithm but not followed.

0.090895
0.09878
0.098765

0.096146667

0.121755
0.14261

0.128048
0.130804333

0.078112
0.079703

0.08521
0.081008333

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

average

average

average

D
ijk

st
ra

A*
D

*
Li

te

Milliseconds (ms)

Metro

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 42 ~

Heatmap: Decadence

The Heatmap in Figure 12.1 shows the paths taken on Decadence overlayed with
Dijkstra’s algorithm. Its clear to see in the opening stages many of the responses match
that of Dijkstra however toward the middle most veer off leaving 29% of the paths
following close with the agent’s route.

Figure 12.1 Decadence Heatmap with Dijkstra's Algorithm

Figure 12.2 shows Decadence with A* overlayed, presenting that A* has a much stronger
finish then Dijkstra’s following the heatmap very closely at the end achieving an almost
exact match. However, the start A* diverts from the heatmaps completely not connecting
with any similar nodes until rejoining them in the middle.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 43 ~

Figure 12.2 Decadence Heatmap with A*

Decadence with D* Lite shown in Figure 12.3 outlines a very strong start following 85% of
participants and continues to follow till the centre where it diverges and only follows 29%
of participants before regrouping with the rest. D* Lite also diverges at the end choosing
to cling to the wall.

Figure 12.3 Decadence Heatmap With D* Lite

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 44 ~

Heatmap: No Talk

Dijkstra’s path through No Talk presented in Figure 12.4 shows a close match between
most paths drawn by participants with only two paths diverging close to the middle of the
path. This map also contains an outlier path that searches along the top of the map
diverging from all other participants.

Figure 12.4 No Talk Heatmap with Dijkstra's Algorithm

Figure 12.5 shows A* pathing through No Talk, A* follows a more averaged path through
the level only diverting from 29% of paths through the middle. Following closely until the
end A* clings the wall closest to the corner while the participants tend to favour the other
side.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 45 ~

Figure 12.5 No Talk Heatmap with A*

D* Lite deviates the most of No Talk shown in Figure 12.6 only matching 14% of the paths
taken through the centre of the map. However, towards the goal D* Lite rejoins the group
matching the majority of paths.

Figure 12.6 No Talk Heatmap with D* Lite

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 46 ~

Heatmap: Motel

Figure 12.7 outlines the paths taken on Motel with Dijkstra’s algorithm. The path found
follows 57% of paths going left around the first obstacle while the other 43% choose to
go right. Closer to the end is where the participants paths begin to diverge as some prefer
to stay closer to the wall then others.

Figure 12.7 Motel Heatmap with Dijkstra's Algorithm

Figure 12.8 shows the path taken by A* and while it follows the majority it tends to favour
sticking to the walls whereas the participants like to walk in the centre. Towards the end
A* follows general path better than Dijkstra’s choosing to stay away from the wall.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 47 ~

Figure 12.8 Metro Heatmap with A*

D* Lite follows the same principles as the previous methods shown in Figure 12.9 D* Lite
goes left around the first major fork but unlike A* stays away from the wall toward the
middle of the route and sweeps around at the finale.

Figure 12.9 Metro Heatmap with D* Lite

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 48 ~

13. Questionnaire Responses

The questionnaire outlined in Appendix 1 was presented to participants for their input.
The results of the questionnaire are listed below.

Question One – Dijkstra’s Algorithm

The feedback from question presented in Figure 13.1 Results of Question One of
Questionnaire many participants gave the path found by Dijkstra’s algorithm a score of 4
but with a low of 2 the final score is 3.71.

Figure 13.1 Results of Question One of Questionnaire

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 49 ~

Question Two – D* Lite

The second question involved the path found by D* lite shown in Figure 13.2 Results of
Question Two of Questionnaire, participants rated the believability an average of 4.14 out
of 5 and with a tight range of values between 5 and 3.

Figure 13.2 Results of Question Two of Questionnaire

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 50 ~

Question Three – A*

The final path presented was that of A* shown in, the average believability score given by
participants was 3.86 with scores ranging from 2 to 5 out of 5.

Figure 13.3 Results of Question Three of Questionnaire

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 51 ~

Question Four – Ranking of Paths

The final question of the questionnaire involved the participants putting the previous
three paths in order of which they are most likely to take then the second and finally the
path they are least likely to follow. The results presented in Figure 13.4 shows the overall
order the paths where chosen in.

Figure 13.4 Results of Ranking the paths

Figure 13.5 outlines the full breakdown of the results revealing that paths 2 and 3 are
chosen as the first choice the most with 42.9% of participants ranking them highest. Path
1 dominates the second choice with 71.4% of participants choosing this as the first
backup path. Finally path three is rated the lowest being chosen last 57.1% of the time
but also interestingly not chosen as any participants second choice.

Figure 13.5 Breakdown of Results of Ranking the paths

Final Thoughts
Correlating the results together shows D* Lite being many participants favoured choice
of path taken, combined with its position being the most believable, rated 4.14/5, puts it
in high standing. The results also outline that Dijkstra’s algorithm performed better than
expected, beating both the other algorithms on several maps for efficiency and providing
a steadfast second choice for paths taken. While A* being the staple tended to fall behind
its counterparts without making much impact.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 52 ~

Discussion and Analysis

14. Computational Discussion

Mazes

The inclusion of heuristic’s aimed to increase the efficiency of the pathfinding however,
in these cases involving the maze’s both A* and D* Lite were slower at producing a path
compared to Dijkstra’s algorithm. This is likely due to how limited the search space was
Dijkstra’s limitation of searching in all directions was hindered greatly reducing the
number of nodes that could be searched. The reduction of the search space also meant
that Dijkstra’s weakness of not knowing where the end was also meant that an extra
calculation was not done for each node that was searched.

In both maze maps Dijkstra’s algorithm proved to be the fastest however, in Maze One, D*
Lite beat out A* but on Maze Two A* is faster than D* Lite. It is said that in most cases D*
Lite is just as fast as A* (Koenig & Likhachev, 2002) it is likely the setup of the maps that
has caused this. Figure 14.1 investigates this further the maze on the left shows A*’s
approach to the maze and the nodes searched, outlined in orange, are heavier at the start
as the paths diverge but head in the direction of the goal. The image on the right shows
D* Lite and the number of nodes searched is greater towards the goal, this is because D*
Lite works from the goal towards the agent rather than A* which works from the agent
toward the goal. This means that when going from the goal toward the agent there are
more diverging pathways, they algorithm needs to search. A potential fix to this problem
could be searching from both the goal and the agent simultaneously and meeting in the
middle, while this will present its own set of challenges it might be able to counteract the
inefficiency encounter on certain map layouts. This proposed change may also aggravate
the current issues with the algorithms getting locked into an incorrect route.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 53 ~

Figure 14.1 Maze Two Paths A*(Left) and D* Lite(Right)

Game Maps

When it comes to the Hotline Maimi (Dennaton Games, 2013) maps there is a range of
different results. Each pathfinding algorithm beats the others for fastest on one map
each. With this range of results, it tricky to definitively say which is the fastest, however it
raises the consideration that pathfinding algorithms or heuristics likely favour a particular
layout. As proven by the mazes the number of diverging path and how restrictive the map
is tending to play to the strengths and weaknesses of the algorithms making some better
and others inefficient. To confirm this a wider range of heuristics and maps could be
used, as it is unlikely there will be one answer the problem but there may be a best-case
solution that provides the best results in most scenarios.

15. Heatmap Discussion

Each of the heatmaps created can be interpreted different ways as the player is the most
dynamic object in any game scene and without bounds the participants were able to draw
any path they liked if they started at the blue square and ended on the red.

Decadence

The Decadence heatmap shows that most players stuck together moving to the centre of
the map avoiding the big obstacles until they must navigate around them. However, in the
middle of the route the participants diverge the route taken some choosing to continue
the current bearing heading left and others divert around the right. While moving around
towards the right is more efficient only 29% followed this route, thusly doesn’t hold the
majority.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 54 ~

A* also deviates from the path immediately deciding that it is more efficient to head
diagonally towards the first obstacle where all participants stayed clear leaving A* with
the lowest score out of the gate but finishing stronger than the other two algorithms.

No Talk

No Talk is a much tighter map with less space to navigate this did not stop the participants
attempting to steer clear of obstacles as much as possible with some taking wide berths
around corners and 43% of paths aiming to stay in the middle of corridors and avoid
clinging to the walls. Due to the restrictive nature of the map both Dijkstra and A*
overlapped with many participants whereas D* Lite clung to the opposite wall. The wall
that the algorithms follow tends to depend on the direction that the path travels in all
maps A* and D* Lite cling to opposite walls. It would be interesting to get participants to
navigate from the goal to the player instead to see if the direction of travel also changes
the player’s path.

Due to the deviation in the D* Lite path it only matched 14% of paths taken and for some
sections didn’t match any making it the least accurate on this map.

Metro

Metro showed a change in the players paths, in the previous two maps many participants
moved forward without deviating until the first obstacle. 57% of players rerouted
immediately around the obstacle, something that was copied by all pathfinding
algorithms. D* Lite and A* disagree again on sections of the path however, unlike previous
results the players switched between the walls they clung to. Early on D* Lite successfully
matches with 57% of participants but later drops down to 14% whereas A* does the
opposite matching with 29% early one but merging with the rest of the participants later
with 86% matching.

Heatmap Conclusion

 The movements of the player through an environment maybe more psychologically
charged then initially thought, while D* Lite and A* disagreed on which wall to cling to the
participants developed a pattern of avoiding any obstacle as much as possible. Changing
the cost of traversal for nodes that have a wall adjacent might provide a path that closer
resembles the paths taken by the participants.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 55 ~

16. Questionnaire Discussion

 Question One – Dijkstra’s Algorithm

Many participants rated Dijkstra’s algorithm 4 out of 5 claiming 57% of the vote giving a
very high confidence level. However, because of the range of scores given to Dijkstra the
average rating comes to 3.71/5 giving 74.2% confidence rating that participants would
believe the path created by the algorithm. However, with 14% giving a score of 2/5 it
outlines that the minority that are not confident with the believability are almost certain
that they wouldn’t believe this path.

Question Two – D* Lite

D* Lite was rated the best out of the three pathfinding algorithms, scoring an average
rating of 4.14/5 making its confidence value of 82.8%. The lowest score given was 3/5
making the score achieved more concrete with most participants that over 50% of the
time they would believe the path taken.

Question Three – A*

A* had a full range of scores starting at 2/5 all the way up to 5/5 with the majority putting
5/5. Although most people put a top score the second most popular score was 3/5 bring
the average score down to 3.86/5, 77.2% confident, making it less believable than D* Lite
but more believable than Dijkstra’s algorithm. Despite the high confidence value, it is
hard to confirm that this path will not be questioned due to the full range of scores given
there is a probability the path will make some player question how believable the agent
is.

Question Four – Ranking of Paths

In the test of believability Dijkstra’s algorithm scored the worst with the lowest
confidence level however, when asked to rank the paths in order of which the participant
is most likely to take to the lowest Dijkstra was many participants second choice. Dijkstra
was selected 71.4% as the second path selected and on 14.3% for both first and last
choice, meaning that despite the low confidence many believed it better for the player to
take then one of the others.

D* Lite and A* was put in the top spot by 42% of the participants, tying them perfectly as
the paths most likely to be taken. D* Lite was also rated at the second and last choice
slots for 28.6% each, despite it taking the top spot so often participants ranked Dijkstra
as more favourable for the second choice.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 56 ~

While A* contested D* Lite as most likely to be taken by a player and beat Dijkstra in the
believability test 57.1% of the time A* was put in the least likely slot and no score for
second choice. This could mean that players would not question if an agent took that
path but acting as a player in the game are unlikely to follow the path that is laid out by A*,
and if the agent is expected to move like a player this could break immersion (Roberts,
2024b).

Conclusion
The believability of any given path is not as clear as it might seem, it is easy to see a
problematic behaviour when an agent walks into a wall, but harder to understand what
behaviours the player might question. Each player will develop an understanding of how
the game world is expected to work and will adjust their tolerances accordingly. This
understanding can be seen in the heatmaps where some participants took the nature of
the grid to mean they could only move between the squares directly, or others looking to
satisfy an exploration path.

There is a distinction between how a player expects another player to move then that of
an AI agent. In the real-world people will take alternate routes based on knowledge of the
environment. This could be physical like avoiding roadworks but could also be an
emotional avoidance, taking a route that avoids a road they do not like. This route
planning transfers into the game world seen in testing participants would take differing
routes that may be slower but based on their preference more appealing.

It is more important to understand the players expectation of what is believable then to
try to account for every possibility. Every pathfinding algorithm presented builds upon the
previous; Dijkstra’s algorithm formed the basis that formed A* and adaptation of A*
created D* Lite. However, the progression is not always a straight line, it is precisely the
advantage of A* that limited it in some of the tests, searching for a route with heuristics
guided A* and D* Lite down the wrong paths thinking they were getting closer.

The efficiency of pathfinding algorithms are just as constrained by their environment as
much as they are the algorithm itself. The current layout of the grid and the maps selected
favour the simpler algorithms, by limiting the number of nodes that can be searched in
an area the weakness of Dijkstra’s algorithm cannot be fully realised and inadvertently

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 57 ~

the benefits of heuristics are prevented. This changes the selection process of
pathfinding algorithms to match the environment to be searched, as space complexity,
as much as it is to make the algorithm more efficient in time complexity.

Reactivity can give an agent an advantage over more static methods of creating AI
behaviours however, believability must be considered in all aspects of the development
process. Making the most reactive agent with human-like behaviours without factoring in
believability on how they could navigate the space could impact the level of Flow the
player can experience. The impact of an agent running in fear is dampened if that agent
gets stuck walking into an obstacle.

This would mean that there is a potential for games to use an ineffective algorithm for the
search space, while testing pathfinding algorithms in a small search space it was found
that each algorithm found strengths in different types of maps. Condense maps such as
mazes allowed Dijkstra’s algorithm to find paths quickly and effectively the search space
itself controlling the number of nodes that can be searched. However, in spaces that had
more open areas the use of heuristics forced the search in the direction of the goal. This
was not always the case when the direction the search travelled in as it allowed the path
to get stuck searching down paths that ended abruptly.

There is also a trade of for the believability of the path that is generated. Discovered during
testing the most believable pathfinding algorithm D* Lite was generally the slowest
algorithm on the maps selected. While the least believable Dijkstra’s Algorithm, proved
to be the fastest in a maze and the second fastest on 2 of the maps tested. This would
mean that for a game to incorporate the most believable algorithm it would have to
sacrifice some of the efficiency of the pathfinding. However, this result may not hold true
if the maps became larger or more open as they may favour heuristic based searches.

Recommendations
The limitations of the maps hindered the final conclusions of the testing. This could be
enhanced by using a wider range of maps from different games, including larger more
open maps and some smaller and condensed. The inclusion of a wider map pool would
allow the algorithms tested to be equated to maps they prefer and some in which they
are not optimised for. Larger selections of maps would also give participants diversity
over the layout of the maps and the obstacles contained within. An additional

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 58 ~

enhancement of this would also to randomly generate the start and the end point to
explore how the believability and navigation changes with distance.

Scaling of the testing is another area that could be improved, under the current method
the heatmaps were collected and manually transferred onto each algorithm. However, to
solidify the results of the testing, a larger group of participants would be ideal, scaling the
current method would require an abundance of time and resources delaying other
aspects of the research. Searching for alternative methods to complete the participants
heatmap should be explored or tool created to correlate the results together.

Reactivity underpinned a lot of the research and how an agent would navigate around
dynamic obstacles, this relates very heavily to believability in many games. However, due
to the nature of the study while D* Lite and parts of the artefact can handle dynamically
placed obstacles this was not tested for and distracted parts of the research.
Nevertheless, it is an interesting avenue for research and as games strive towards
increasing reactivity something that is needed. Including this in the testing would
enhance the overall results, this would be feasible by allowing participants to interrupt
an agent’s path by placing obstacles and asking for feedback based on how the agent
handled the interruption.

Alternative pathfinding algorithms could be explored to enrich the testing. With the
limited number of algorithms, a wider range of maps and testing would only cement one
of the three included as the one to use without consideration many other algorithms that
could shine under conditions met through test that have otherwise been discarded.

In pursuit of believability the research conducted covered a wide area of pathfinding,
decision making including enhancements and adaptations that have been made over the
years. The focus on believability underlined the aims and objectives and directed the
artefacts goals while testing. Technical and complex pathfinding algorithms were
understood, adapted and implemented into an artefact that is expandable to be
augmented with any additional pathfinding algorithms for future work. Finally, a
methodology was established that will allow for testing to be improved upon and
explored in a wider environment.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 59 ~

Appendix
Appendix 1 Questionnaire submitted to participants

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 60 ~

Bibliography
Airlangga, G., 2024. A comparative analysis of pathfinding algorithms in static
environments: modifiedA*, PSO, and FLA. Jurnal Mantik, 7(4), pp. 3967-3976.

Barnouti, N. H., Al-Dabbagh, S. S. M. & Naser, M. A. S., 2016. Pathfinding in Strategy
Games and Maze Solving Using A* Search Algorithm. Journal of Computer and
Communications, 4(11).

Bell, E., Bryman, A. & Harvey, B., 2015. Business Research Methods. Oxford: Oxford
University Press.

Bethesda Softworks, 1996. The Elder Scrolls II: Daggerfall. [Game] s.l.:Bethesda
Sodtworks.

Botea, A. et al., 2013. Pathfinding in Games. Artificial and Computational Intelligence in
Games, Volume 6, pp. 21-31.

Bourg, D. M. & Seamann, G., 2004. AI for Game Developers. 1st ed. s.l.:O'Reilly Media,
Inc..

Brodén, A. & Bohlin, P., 2017. Towards Real-Time NavMesh Generation Using GPU
Accelerated Scene Voxelization, s.l.: Digitala Vetenskapliga Arkivet.

Bull, R., 2024a. Squad Behaviour Using a Task Stack Approach for Call of Duty: Strike
Team. In: P. Roberts, ed. Game AI Uncovered. s.l.:CRC Press, pp. 43-53.

Bull, R., 2024b. Using Voxels for Environmental Cues. In: P. Roberts, ed. Game AI
Uncovered. s.l.:CRC Press, pp. 133-139.

Champandard, A. J. & Dunstan, P., 2013. The Behavior Tree Starter Kit. In: Game AI Pro.
s.l.:CRC Press, pp. 73-91.

Condò, M., 2024. SB-GOAP Self-Balenced Goal-Oriented Action Planning. In: Game AI
Uncovered. s.l.:CRC Press, pp. 175-184.

Creative Assembly, 2014. Alien: isolation. [Game]. s.l.:Sega.

Cui, X. & Shi, H., 2010. A*-based Pathfinding in Modern Computer Games. Volume 11.

Dennaton Games, 2013. Hotline Miami. s.l.:Devolver Digital.

Dijkstra, E. W., 1959. A note on two problems in connexion with graphs. Numerische
Mathematik, December.pp. 269-271.

Dill, K., 2013. What Is Game AI?. In: S. Rabin, ed. Game AI Pro. s.l.:CRC Press, pp. 3-9.

Dyckhoff, M., 2015. Ellie: Buddy AI in The Last of Us. In: S. Rabin, ed. Game AI Pro 2.
s.l.:CRC Press, pp. 431-442.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 61 ~

Graue, C., 2016. Qualitative Data Analysis. International Journal fo Sales, Retailing &
Marketing, pp. 5-14.

Green, D., 2024. Auto-Generating Navigation Link Data. In: R. Paul, ed. Game AI
Uncovered. s.l.:CRC Press, pp. 107-120.

Guo, X. & Luo, X., 2018. Global Path Search based on A* Algorithm. s.l., Atlantis Press.

Hart, P. H., Nilsson, N. J. & Raphael, 1968. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2),
pp. 100-107.

id Software, 1993. Doom, [Game]. s.l.: id Software.

Iskanda, U. A. S., Diah, N. M. & Ismail, M., 2020. Identifying Artificial Intelligence
Pathfinding Algorithms for Platformer Games. Shah Alam, IEEE.

Isla, D., 2005. GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI. [Online]
Available at: https://www.gamedeveloper.com/programming/gdc-2005-proceeding-
handling-complexity-in-the-i-halo-2-i-ai

Ji, Q. & Gao, C., 2007. Simulating Crowd Evacuation with a Leader-Follower Model.
IJCSES International Journal of Computer Sciences and Engineering Systems, 1(4), pp.
249-252.

Kirilenko, D., Andreychuk, A., Panov, A. & Yakovlev, K., 2023. TransPath: Learning
Heuristics for Grid-Based Pathfinding via Transformers. s.l., Proceedings of the AAAI
Conference on Artificial Intelligence.

Koenig, S. & Likhachev, M., 2001. Incremental A*. s.l., NeurIPS.

Koenig, S. & Likhachev, M., 2002. D*Lite. Edmonton, s.n.

Koenig, S., Likhachev, M. & Furcy, D., 2004. Lifelong Planning A∗. Artificial Intelligence,
155(1-2), pp. 93-146.

Lester, P., 2005. GameDev.net. [Online]
Available at: https://www.gamedev.net/tutorials/programming/artificial-intelligence/a-
pathfinding-for-beginners-r2003/
[Accessed 28 11 2024].

Lim, L. Y., 1968. A Pathfinding Algortihm for a Myopic Robot, Pasadena: California
Institute of Technology.

Liu, D., 2023. Research of the Path Finding Algorithm A* in Video Games. Highlights in
Science, Engineering and Technology, Volume 39, pp. 763-768.

Madhav, S., 2018. Game Programming in C++: Creating 3D Games. First ed. Boston:
Addison-Wesley Professional.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 62 ~

Mäntysalo, J., 2024. Graph search-based pathfnding in dynamic environments, s.l.:
UNIVERSITY OF TURKU.

Millington, I., 2019. AI for Games. Third ed. s.l.:CRC Proess.

Murphy, R. R., 2000. Introduction to AI Robotics. First ed. s.l.:Bradford Books.

Namco, 1980. Pac-Man, Arcade [Game]. 1980: Midway Games.

qiao, 2023. Pathfinding.js. [Online]
Available at: https://qiao.github.io/PathFinding.js/visual/
[Accessed 7 November 2024].

Rabin, S., 2017. The Illusion of Intelligence. In: S. Rabin, ed. Game AI Pro 3. 1st ed. New
York: A K Peters/CRC Press, pp. 3-9.

Rabin, S. & Sturtevant, N. R., 2013. Pathfinding Architecture Optimizations. In: S. Rabin,
ed. Game AI Pro. s.l.:CRC Press, pp. 241-252.

Rafiq, A., Kadir, T. A. A. & Ihsan, S. M., 2020. Pathfinding Algorithms in Game
Development. s.l., IOP Conference Series: Materials Science and Engineering.

Rahmani, V. & Pelechano, N., 2021. Towardsahuman-likeapproachtopathfinding.
Computers & Graphics, Volume 102, pp. 164-174.

Rajesh, V. & Wu, C. Q., n/d. An Extension of Pathfinding Algorithms for Randomly
Determined Speeds, s.l.: s.n.

Rallabandi, S. & Roberts, P., 2024. Reactive Behaviour Trees. In: P. Roberts, ed. Game AI
Unvovered. s.l.:CRC Press, pp. 54-63.

Reeves, M. C., 2019. AN ANALYSIS OF PATH PLANNING ALGORITHMS FOCUSING ON A*
AND D* [Master's thesis, University of Dayton], s.l.: OhioLINK Electronic Theses and
Dissertations Center.

Rivera, N., Hernández, C., Hormazábal, N. & Baier, J. A., 2020. The 2k Neighborhoods for
Grid Path Planning. Journal of Artificial Intelligence Research, Volume 67, pp. 81-113.

Robert, P., 2024a. Game AI Uncovered. 1st ed. Boca Raton: CRC Press.

Roberts, P., 2022. Artificial Intelligence in Games. First ed. s.l.:CRC Press.

Roberts, P., 2024b. Believable Routes A Pathing Acceptability Metric. In: P. Roberts, ed.
Game AI Uncovered. s.l.:CRC Press, pp. 73-82.

Schoener, E. R., 2024. A Comprehensive Review and Practical Applications of, s.l.: s.n.

Soutter, A. R. B. & Hitchens, M., 2016. The relationship between character identification
and flow state within video games. Computers in Human Behaviour, Volume 55, pp. 1030-
1038.

Harry Watts Dynamic Pathfinding in a Changeable Environment 22016075

~ 63 ~

Stentz, A., 1994. Optimal and efficient path planning for partially-known environments.
San Diego, IEEE.

Tatio, 1978. Space Invaders. Arcade [Game]. Japan: s.n.

Thompson, T., 2017. The Perfect Organism: The AI of Alien: Isolation. [Online]
Available at: https://www.gamedeveloper.com/design/the-perfect-organism-the-ai-of-
alien-isolation
[Accessed 24 October 2024].

Thompson, T., 2024. The Changing Landscape of AI for Game Development. In: P.
Roberts, ed. Game AI Uncovered. 1st ed. Boca Raton: CRC Press, pp. 1-11.

Uzoeghelu, J. E., 2021. ROBOTPATHPLANNING:EXPLORINGD*(STAR)LITE , Cyprus: NEAR
EAST UNIVERSITY.

Valve South, 2008. Left 4 Dead [Game]. s.l.:Valve.

van Toll, W. et al., 2016. A comparative study of navigation meshes. Burlingame,
Association for Computing Machinery, pp. 91-100.

Wooden, D. T., 2006. Graph-based Path Planning for Mobile Robots, s.l.: School of
Electrical and Computer Engineering Georgia Institute of Technology.

Wooldridge, D., 2024. Infinite Axis Utility System and Hierarchical State Machine. In: P.
Roberts, ed. Game AI Pro. s.l.:CRC Press, pp. 168-176.

Xu, X., 2023. Pathfinding js. [Online]
Available at: https://qiao.github.io/PathFinding.js/visual/

Zarembo, I. & Kodors, S., 2013. Pathfinding Algorithm Efficiency Analysis in 2D Grid. s.l.,
s.n., pp. 46-50.

