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Abstract  

Destructibility in games can suffer from being less dynamic, as the way a model will be 

destroyed is often pre-generated. This can be inflexible when aiming to fracture the 

model and then have subsequent fractures of the broken parts. It may also not fully 

support breakage from different positions and with varying strengths. To solve this issue 

voxels were investigated for their ability to support dynamic destruction. Specifically, the 

ability to re-use existing 3D models and the skills to create them was explored through 

the ability to voxelise a given model into many voxels. In addition, an artefact was 

developed using Vulkan and C++ to attempt to optimally render and simulate voxelised 

models. From a user perspective, this would allow an inputted 3D model to be voxelised 

at a specified resolution and then have its destruction simulated with dynamic 

explosions. By investigating the performance of the developed artefact, it was 

discovered that the performance of simulation is the main bottleneck when it comes to 

using voxels as a destructibility primitive. This drew the conclusion that voxels are not yet 

in the place they need to be for use as a primitive for simulating destruction in games 

even though the naïve rendering performance proved promising.  
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Nomenclature  

API – Application Programming Interface 

FPS – Frames per second 

GPU – Graphics processing unit 

RAM – Random Access Memory 

SVO – Sparse Voxel Octree 

Voxel – A three-dimensional counterpart to a pixel 

2D – Two dimensions or two dimensional 

3D – Three dimensions or three dimensional  
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Introduction  

From simple effects to full simulation, many games have featured destruction to give 

feedback to the player. Simple effects like an explosion when an enemy is destroyed can 

be seen as early as Space Invaders (Taito, 1978). However, with the improvement of 

hardware and increase in demand for games, there are many games that showcase more 

in-depth destruction, even using destruction as a core mechanic of the game. For 

example, the game Teardown (Tuxedo Labs, 2022) has fully destructible environments 

that are crucial to its gameplay, powered by voxels. 

Although there are games with fully simulated and rendered destructible models, they 

often require pre-processing 3D models when placing them in a simulated destructible 

environment. One of the simplest methods (Hoss and Emma, 2012), is manually creating 

the destructed version of a model and swapping that version in when destruction occurs. 

This works as a naïve approach but has the issue of requiring manual creation of the 

destroyed model. 

Various methods for producing destruction models already exist to solve this issue but 

might fall short of the freedom that voxels give when simulating destruction, as voxels 

could be used to break models into much smaller parts, allowing players to destroy parts 

of the model with higher precision. Most approaches that calculate the way a model will 

destruct ahead of time may not be usable in a real-time fashion to further break apart the 

model into smaller parts, whereas this would be more trivial when considering voxels. It 

is also possible that they lack the flexibility to sufficiently simulate destruction, for 

example when simulating explosions, they may not be able to properly handle the varying 

position and strength of the explosion.  

To give the player the extra freedom that could be gained from rendering and simulating 

the destruction of models and environments using voxels, it is key that there exist ways 

to create these models and environments. As there are already many people trained in 

creation of typical 3D assets, alongside many existing models and environments, a 

generalised method to convert these into a voxel format, then render and simulate them 
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optimally, would allow teams looking to create a game with high precision destructible 

models and environments to focus on other parts of the game’s creation. 

There is not a wide selection of tools that achieve this effect, and the methods to both 

render and simulate the result is not necessarily related to the outcome of such a tool. A 

method to create a program that would allow users to transform their models into a 

destructible format then test the destruction in an optimised environment backed up by 

research, which could be directly integrated into their game, would be beneficial to the 

future development of games that focus on high precision destructibility over graphical 

fidelity as they would still be able to use their usual pipeline for 3D assets by using 

voxelisation.  
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Aims and Objectives 

This dissertation aims to firstly review the current state of techniques for destructibility 

in games, reviewing literature on converting, rendering, and simulating models in a voxel 

form. Through the review these methods will be compared to determine their suitability 

for scalable, performant voxel model destructibility in games to determine whether 

voxels can be used as a destruction primitive. Specifically, the following research 

questions (RQ) will be answered: 

• (RQ1) Which areas are currently underexplored in using voxels as a primitive for 

real-time destructibility? 

• (RQ2) What current methods for converting 3D models into a voxel format exist?  

• (RQ3) Is it possible to simultaneously render and simulate voxelised models in 

real-time using a typical desktop personal computer? 

Following a thorough review of related works, an approach will be discussed to measure 

the performance of rendering and simulating the real-time destructibility of voxelised 3D 

models to determine the suitability of voxels as a destruction primitive. Real-time will be 

assessed as an average simulation of at least 60 frames per second (FPS). In particular, 

the scalability and precision will be evaluated to determine the suitability of voxels as a 

destruction primitive. Precision being number of voxels a model can be correctly split 

into, and scalability assessing the number of voxels able to be rendered and simulated 

in real-time.  
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Literature Review  

Dest ruct ibilit y Methods 

Destructibility in 3D has uses across computing, whether for medical carving (Williams, 

2009), animated movies (Tollec et al., 2020), simulating fractures in materials, or in video 

games. For video games more care must be taken when selecting the method used 

(L’Heureux, 2016) as there are many other systems that must operate around the 

destructibility systems, and the requirement for real-time simulation means more 

hurdles to overcome. 

When trying to overcome these hurdles it is good to know that given a 3D model there are 

many ways to simulate destructibility. For the most accurate simulation of model 

destructibility, offline methods may be preferable, however, longer computation times 

are required (Workman, 2006), meaning they are limited in the areas they are applicable. 

Real-time applications like games require solutions that can be simulated at significant 

speed, with expectations of at least 60 fps expected for modern games.  

The work that Workman (2006) conducts also suggests that offline methods used to pre-

calculate the way a model will destruct could be used to create patterns that could be 

later used in a real-time application. These would require less work compared to that of 

creating a separate destruction mesh that gets put into the original model’s place (see 

Figure 1). 

Performance of such pre-calculated methods is still important (Forslund, 2023) as it 

would speed up the workflow of designers aiming to iteratively design the destructibility 

of a level, especially in cases where there a multitude of parameters that may need to be 

fine-tuned. 
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Datasets 

A similar alternative to using pre-calculated methods for simulating the destruction of 

models, are datasets that have been prefilled with a variety of pre-fractured models. 

However, they are restrictive due to being limited to the models and fractures they offer. 

Sellán et al. (2022) constructed a dataset of models collected from normal model 

datasets and applied a fracturing algorithm to them which could be directly used in a 

real-time application. This would be suitable where realism is not of foremost 

importance, however, should a more faithful representation of real-world fractures be 

desired Lamb et al. (2023) present a dataset of 3D scans of objects in both their fractured 

and whole counterparts. The main limitation of datasets being the potential lack of the 

relevant model, in which case algorithms for generating the destruction may be desired. 

 

Physically Based Methods 

Methods that often require pre-calculation due to their complexity are various physically 

based modelling methods. These methods are used quite often in simulating 

destructibility which could be due to their accuracy and the breadth of relevant research 

Figure 1: A crate’s mesh (left) and its destruction mesh (right) (Hoss, R. and Emma, T., 2012). 
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done in material sciences. An advantage to these methods is that they can also be used 

to simulate deformation (Nealen et al., 2006) alongside fracturing, as shown in Figure 2. 

They also associate well with physics simulation due to their usage of forces. However, 

it is commonly the case that the calculation of how a mesh fractures are unfortunately 

not a real-time solution. 

 

Finite Element Methods 

One physically based method is the Finite Element Method (FEM) which discretises 

models as tetrahedral meshes (Morris, 2010), allowing the propagation of strain over 

neighbouring elements to simulate brittle fractures. 

Parker and O’Brien (2009) describe a more dynamic destruction method that also relies 

on manual artistic input which uses such a method. They achieve a more accurate 

simulation by fracturing objects when the strain energy exceeds a threshold. The artistic 

input was required when manually creating the appearance of the broken parts. These 

broken parts of the object were dubbed splinters and were used to ensure the detail of 

the object was preserved upon fracturing. 

Decoupling the simulation mesh from the crack surface as in the extended finite element 

method (XFEM) is improved on by Chitalu et al. (2020) to efficiently simulate brittle 

fracture at a high resolution without having to re-mesh. In a single-threaded and 

unoptimized implementation of this, the simulation times were recorded as being in the 

order of seconds. Consequently, the performance of this method would require much 

more optimisation to be suitable for real-time applications. 

Figure 2: Highly plastic deformations and ductile fracture (Nealen et al., 2006). 
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For a scenario where less fractures per element are required, Mandal et al. (2023) 

present a graph-based FEM that can achieve real-time fracture rates for lower resolution 

meshes. However, the authors do note that their method is limited to fracturing the 

tetrahedral elements into a maximum of four parts. 

To improve the performance of these, or similar, methods (Morris, 2010) when there are 

no other graphics processing unit (GPU) bottlenecks, the implementations could port 

their code over to the GPU. This would allow them to take advantage of the parallelism 

that it provides when performing the same operation to more performantly simulate 

fracture of destructible models. 

 

Bonded Discrete Element Methods 

Such a strategy that leverages the power of the GPU is the Bonded Discrete Element 

Method (BDEM) as described by Lu et al. (2022). BDEM represents solid materials as a 

collection of densely packed elements, attempting to copy the micro-structure of the 

materials by utilising nodes and bonds. Lu et al. (2022) implements it in a more efficient 

way. They then used various settings to simulate different fragmentation processes, 

achieved by breaking of bonds between elements. They did find a high computational 

cost but note that further work, due to the good scaling consistency of BDEM, could 

overcome this limitation. 

In a follow-up study presented by Lu et al. (2023) simulation speeds magnitudes faster 

than other state-of-the-art methods were achieved. However, the speed of their 

simulation was still far off milliseconds to compute, suggesting that BDEM still requires 

further innovation to be computationally fast enough for real-time simulation of 

destructibility and fracture. 
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Material Point Methods 

Similarly to BDEMs, Material Point Methods (MPM) are another slower numerical way to 

simulate accurately a variety of materials. MPM models an object not as a mesh but as a 

continuum body which is an amount of small material points. This leads to more 

accurate simulations of certain materials, but Fan et al. (2022) used MPM to simulate 

damage to brittle objects to then simulate fracturing (see Figure 3), but this took hours to 

fully simulate which they compare as a reasonable time for an MPM. 

 

Boundary Element Methods 

Assuming fractures are being pre-calculated, a method that can allow easier iteration is 

the Boundary Element Method (BEM). Hahn and Wojtan (2016) developed a fast 

approximation method for BEM brittle fractures, for this purpose of faster iteration times. 

BEM focuses on the surfaces of 3D objects to avoid the complications from volumetric 

meshing operations and Hahn and Wojtan’s (2016) estimator produces results 

reasonably close to a full BEM implementation, which could allow better iteration in the 

development of a pre-calculated fracture for a real-time game or simulation. 

Assuming there is sufficient training time available, utilising a machine learning method 

(Huang and Kanai, 2023) may be more suitable. Once trained they can create close to 

realistic fractures in seconds rather than minutes. However, these methods would still 

require extra work to operate as a pre-calculated method for real-time and require testing 

in more complex game environments where there are dynamic elements involved. 

 

Figure 3: Visual summary of stages for simulating fracture using MPM with the method by Fan et al. (2022). 
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Voronoi 

A technique more often used in pre-calculated destructibility methods for real-time 

applications is Voronoi decomposition, which is a technique that can be used to split up 

space based on a finite number of points as can be seen in Figure 4. This technique can 

be used to fracture meshes, with meshes being split along the boundaries of the cells 

created from Voronoi decomposition. Grönberg (2017) achieved a near real-time 

approach utilising such an implementation and Müller et al. (2013) managed to 

implement a real-time and more dynamic approach to destruction, where the impact 

location affects how a model will fracture. This method still relied on precomputing 

fracturing but leverages a fracture algorithm to change how a model will fracture. 

Similarly to other methods that pre-calculate, they found that it would suffer from having 

to recompute should any change occur to the model. Also, they found that Voronoi 

methods are not always as physically accurate as other destructibility methods. 

 

To gain more realism over Voronoi, Sellán et al. (2023) developed a new method to pre-

calculate fracture patterns for models that consider the weak points of a model. They 

use a method to compute a model’s fracture modes that can then be used to simulate 

destructibility based on different impacts in real-time based on where a model is 

geometrically weak. However, as a pre-computed approach, they still found that they 

could not simulate fractures past the first due to the computational complexity. This 

Figure 4: A two-dimensional Voronoi diagram (Grönberg, 2017). 
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means their approach would not be as dynamic, especially for larger models which could 

desire further fracturing. 

This lack of dynamism was noticed by the answers to a questionnaire that Thomas and 

Zhang (2023) received, where the real-time fracturing and thus ability to fracture again 

after the first fracture felt more realistic to the participants. Some of these realism issues 

could be resolved by storing more possible fractures to choose from in the pre-fractured 

case, however, these limitations would need to be properly explored. 

McGraw (2024) achieves such a dynamic implementation of destructibility through 

voxelising a mesh at a low resolution and using 8 position-based dynamics particles to 

represent the mass, position and velocity of the voxel. The voxels are then utilised as an 

animation cage for the mesh. Through having face-to-face constraints between the 

voxels, this allows destruction in a variety of forms like fractured into voxels, peeled into 

sheets, and shredded into strips. 

 

Voxelisat ion Methods 

An important step to achieve similar results is the method in which an inputted 3D mesh 

is converted into a voxelised form. Voxel space is a representation of 3D Euclidean space 

discretised as voxels at fixed intervals, often represented in a binary form (Berg et al., 

2021) where a voxel either exists or does not exist. There are also slight variations on how 

the voxels are stored with some using a metric for how inside an object a voxel is 

(Karabassi et al., 1999) to allow for smoothing of the object. Other implementations may 

store data such as surface normals for lighting calculations (Young and Krishnamurthy, 

2018), material properties for better rendering (Zhang et al., 2018), or potentially more 

attributes depending on the requirements of the application. However, it is worth noting 

that there are extra memory requirements when storing this extra information. 
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Alongside the method of storage, when selecting a voxelisation algorithm there are a few 

considerations that must be taken depending on the needs of the application. 

Simulations (Aleksandrov et al., 2021) may have to consider the separation and 

connectivity of voxels to determine, for example, where fluid can and cannot flow. The 

connectivity of a voxel (Huang et al., 1998) is commonly represented with a prefix that 

communicates what part of the voxels are connected. Therefore 6-adjacent voxels are 

those sharing a face and 18-adjacent voxels share either face or edge. Finally, 26-

adjacent voxels may share a face, edge or corner, forming the full neighbourhood that a 

voxel could have. 

Given this adjacency, the connectivity of a voxelisation is the maximum adjacency held 

by all voxels. If any voxel on the voxelisation is only connected to another voxel with 18-

adjacency, the voxelisation cannot be 6-connected. Then separation is the lack of 

connectivity of any possible sets of empty voxels that pass through the voxelised model 

(Cohen-Or and Kaufman, 1995). For example, a voxelisation would be 6-separating if no 

6-connected path of empty voxels could separate parts of the voxelisation. However, it 

could still be separating of a higher order. 

 

Depth Buffer 

Potentially one of the conceptually simplest methods for voxelising a 3D mesh is by using 

the depth buffer. The method has been around for a long time (Karabassi et al., 1999) and 

still sees some use (Clothier, 2017). The way it works is by rendering the input mesh from 

three different pairs of perspectives, each pair usually being from opposite sides of an 

axis. Then the opposing depth values can be used to determine whether a voxel falls 

inside of the mesh. A significant drawback of this method is the requirement to render 

the mesh multiple times to obtain the depth values, however, this is not as prudent when 

considering a tool that pre-creates a voxelised mesh because it would not require the 

same level of computational efficiency. For such a use, the considerable issue would be 
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the inability to handle meshes with complex inner geometry, as the pairs of depth values 

would not be able to capture the internal geometry. 

 

Rasterisation 

Some methods for voxelisation (Eisemann and Décoret, 2006) may not provide full 

coverage and miss voxels, which can lead to issues when features such as accurate 

collision detection is desired. To combat this some implementations, focus on ensuring 

every voxel intersecting the input model is correctly detected, often called conservative 

voxelisation. For example, Zhang et al. (2007) implement such a method based on the 

rasterisation family of voxelisation techniques, except they calculate a more exact 

intersection between the rasterised triangle and voxel region by computing a depth range 

alongside the projected intersection of the triangle, as shown in Figure 5. The depth range 

is enlarged by a small value to combat floating point errors, together this correctly 

obtains a full voxelisation coverage. The main downside to their method being that the 

voxelisation may contain more voxels than necessary.  

Young and Krishnamurthy (2018) developed a multi-level voxelisation where they first 

rasterise slices of the model in a direction and use a stencil buffer method to identify 

Figure 5: Example of the rasterisation voxelisation pipeline by 
Zhang et al. (2007) 
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inside voxels. In this first level they also classify which voxels are boundary voxels using 

a box-triangle overlap test. Then in the finer pass of their voxelisation, they voxelise the 

boundary voxels at a finer detail by using a ray-triangle intersection test in a clipped slice, 

to identify inside voxels at the finer level, with odd number of intersections meaning 

inside voxels, leveraging their created stencil buffer to ensure the intersection count is 

accurate. Similar to earlier methods, they found that if they include the boundary voxels, 

they get an overly conservative voxelisation, however, they also gave the option to only 

include the inner voxels, which gave them an underestimate of the voxelisation. 

There are rasterisation methods that do not focus on conservative voxelisation such as 

the method implemented by Fei et al. (2012) which tessellates triangles in the geometry 

shader based on voxel size, then in the rasterisation stage the fragment position converts 

into the occupancy of the voxels. Something interesting they did in their method was 

using the displacement map of the mesh to voxelise low poly meshes better. This let 

them potentially obtain a better voxelisation at higher speeds by voxelising low poly 

meshes instead of high detailed ones. 

The geometry shader is also used by Crassin and Green (2012) to project triangles based 

on their dominant axis. Then sets up a viewport as a slice of the voxel grid to rasterise a 

slice of the model so that fragments correspond to voxels based off their position and 

depth values. Before reaching the fragment shader though, the triangles are enlarged and 

a bounding box created, meaning in the fragment shader the box can be used to clip the 

enlarged triangle to get conservative voxelisation through the bounding polygon of the 

triangle. The advantage of this method is the efficiency of storage, as the voxelisation is 

stored in a sparse voxel octree (SVO) to ignore the large amount of empty space. The 

octree is created top-down by flagging nodes based on contents of the voxel-fragment 

list created in voxelisation, then fills in the leaf nodes of the octree with the relevant 

voxels before creating a bottom-up mipmap of the voxelisation. This is all done to better 

handle large and complex objects. 

This fragment-parallel approach to voxelisation was found to exhibit poor performance 

with many small triangles (Rauwendaal, 2012) which led to the consideration of a hybrid 
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approach to voxelisation involving classifying triangles based on their size to determine 

whether a rasterisation approach should be used. For large triangles a rasterisation 

approach like the previous one mentioned would be used, and for smaller triangles a 

triangle-parallel approach would be used. The approach for triangle-parallel used by 

Rauwendaal (2012) was the box-triangle overlap test. 

 

Box-Triangle Overlap Test 

Usually the box-triangle overlap test involves forming a bounding box around the triangle 

to first identify all possible voxels the triangle might be able to intersect, then the 

method’s chosen overlap test is performed to identify then set the specific voxels that 

the triangle intersects (see Figure 6). For example, Faieghi et al. (2018) check for each of 

these voxels whether the triangle’s projection and the voxel’s projection onto certain 

planes overlap, giving a faster version of the separating axis theorem test. 

 

Schwarz and Seidel (2010) give a similar approach but give a custom box-triangle overlap 

test which uses the triangle’s plane to test for overlap. This has the benefit of them being 

able to change different plane offsets in their voxelisation to obtain either a 26-separating 

conservative voxelisation or a 6-separating thin voxelisation depending on the 

voxelisation requirements. The other benefit given by this approach is that they describe 

Figure 6: Example of the pipeline to voxelise using Box-Triangle Overlap Test (Faieghi et al., 2018) 
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a method to also perform a solid voxelisation given the surface voxelisation they 

previously create. To achieve this, they voxelise the surface then all voxels found past the 

surface are set as solid with both triangle-parallel approach and tile-based method given 

to achieve this. However, like the previously mentioned method, they also gave a method 

to voxelise into a SVO by instead voxelising the surface into the octree, which is slower 

but fills octree directly. Then a propagation method is used to set the voxels inside of the 

model in the SVO, notably this means large blocks of set voxels can be stored higher up 

in the octree to use less memory. 

A similar approach to using the box-triangle overlap test is done by Shukla et al. (2022) to 

be used for moving geometries in fluid dynamics, but once all voxels in the bounding box 

of the triangle have been found, they instead use the triangle’s normal and dot product it 

with the vector to the voxel’s centre to determine whether the voxel is inside or outside 

of the model. Given this they then provide a flood fill strategy to form a solid voxelisation. 

The method was later enhanced by Kumar et al. (2024) to add error correction so that it 

could be used for deformable moving geometries. 

Slightly different to the other box-triangle overlap methods, Bergs et al. (2021) first 

represent the mesh to be voxelised as an R-Tree, then using recursively creates an octree 

by testing against the R-Tree. Whether the octree subdivides is based on two different 

tests, the first test is if the number of possible mesh faces in the R-Tree is above a 

threshold the octree will fully subdivide, then if under this threshold the subdivision is 

based on a triangle-box overlap test (Akenine-Möller, 2005) against the mesh faces. This 

continues until a stop depth, or minimum voxel size is reached. Given this surface 

voxelisation in an octree they also provide a ray casting method to obtain a SVO solid 

voxelisation by counting intersections as the ray travels. 

Ray Casting 

This approach for solid voxelisation is quite common, as it is quite simple to use 

intersection counting to determine whether a voxel is inside or outside of the mesh. Li et 

al. (2023) focus on internal voxelisation and describe how a surface voxelisation could 
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be edited to produce a map between surface voxels and triangles to later be used for 

internal voxelisation. Then the maximum and minimum z values are obtained by from the 

surface voxels to create a 2D-depth buffer. With these stored values a form of ray cast 

that traverse the voxels between the two values and counts intersections to flag the 

internal voxels. This is stored in a SVO like other methods to store the surface in higher 

fidelity. 

More recently, ray casting has been used to directly voxelise (Nourian and Azadi, 2024) 

by casting multiple rays into the mesh to be voxelised and sampling the boundary of the 

mesh by counting intersections of the rays. This represents the mesh’s boundary as a 

point cloud which is later voxelised by generating the Morton code of the point’s position 

as a unique index to set voxels. 

 

Scanlines 

An approach usually more versatile are methods that utilise scanlines and line 

voxelisation to voxelise a model. When considering triangle-parallel approaches, 

scanline methods are usually the preferred choice (Zhang et al., 2018a). Methods that 

generate a bounding box for each triangle usually perform more unnecessary checks that 

can be avoided through a scanline approach. The main consideration to be taken when 

performing scanline voxelisation, is determining the scanline distance to be used on the 

given triangle. 

Zhang et al. (2018a) developed a scanline voxelisation approach that splits up and 

projects triangles into 2D as they found that no optimal scanline distance exists in 3D. To 

achieve this, for each triangle they first voxelise each vertex before going on voxelise the 

edges using a line voxelisation method. Finally, the inside of the triangle inside is 

voxelised by splitting it up in the Z direction and projecting it into 2D. This allows an 

optimal scanline distance to be calculated for each segment, so the scanlines can be 

voxelised with line voxelisation. The line voxelisation used is the choice between real line 
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voxelisation, super-cover line voxelisation and integer line voxelisation, a line 

voxelisation used to combat floating point error. The super-cover version can capture 

more voxels by capturing the voxels that would be missed by any singular points in the 

line segment, guaranteeing a conservative voxelisation. To fully support the integer line 

voxelisation they also provide an integer counterpart to their scanline voxelisation which 

they found to perform similarly but with small error over the floating-point approaches.  

Building upon this Delgado Díez et al. (2024) develop a scanline voxelisation technique 

that ensures voxels are only ever visited once during voxelisation, and that develops a 

gap detection method so that only a single scanline is required in each 2D step. They 

achieve this by first sorting the vertices of a triangle along the axis that is both worst 

aligned with the triangle’s normal and has the lowest magnitude in the triangle’s normal 

vector in absolute value, which they call the primary axis. Then the advance direction of 

the scanline is found by projecting the primary axis onto the triangle’s plane, getting a flat 

advance direction by removing the primary axis component from the advance direction.  

Parallel scanlines are then formed equidistantly from the lowest vertex (in terms of 

primary axis) and progressing along the edge towards the highest vertex. These scanlines 

are line voxelised with a custom line voxelisation that prefers voxels behind the scanline 

in terms of flat advance direction. With their gap detection method checking if the 

neighbour of the voxel in the flat advance direction is close enough to be missed by the 

next scanline to set it now if needed. Finally, the edges of the triangle are line voxelised 

as the voxels at the start and end of the scanlines would be missed otherwise. The whole 

pipeline is outlined in Figure 7. 

 

Figure 7: Scanline Voxelisation pipeline in use by Delgado Díez et al. (2024). 
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Point-in-Tetrahedral Test 

A similar approach to scanline is the voxelisation method of Ogayar-Anguita et al. (2020) 

which uses slicing planes to voxelise tetrahedra, its foundations found in the point-in-

tetrahedral test. Like most point-in-tetrahedral test methods, the first step involves a 

method for generating a tetrahedral mesh, which this method does by ensuring the 

model is triangulated then creates a tetrahedron from each triangle by treating the fourth 

point as the centre of the mesh. Then slicing planes get points of intersection with each 

tetrahedron, rasterising the triangles formed by these points then setting the voxels 

covered by the triangles. One benefit of this method is that it directly calculates the solid 

voxelisation of the model, however, it can be filtered by adjacency to empty voxels to still 

obtain the surface voxelisation. 

There are also methods that directly use the point-in-tetrahedral test like the method 

proposed by Chen et al. (2021). Their method adapts an existing tetrahedral mesh 

generation method that requires a user defined error tolerance value which they found 

that, even at higher values than the original method, it does not produce a big difference 

in the voxelisation. Then for each voxel falling in the bounding box of the tetrahedral they 

apply a fast point-in-tetrahedral test to determine whether the voxel should be set. The 

main benefit of their method over others is that they can support non-manifold, non-

watertight models due to their adapted tetrahedral mesh generation. 

 

Differentiable 

A newer method for voxelisation that also supports non-watertight meshes can be found 

in the method proposed by Luo et al. (2024). They use the concept of winding number 

from topology which can be calculated to determine the number of times a surface winds 

around a point. Winding number was found to not be directly usable due to the sharp 

edges and irregular triangles found in meshes, so instead the method calculates solid 

angles to determine the occupancy of points, using a modification of arctan which lets 
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the occupancy be almost binary for points, with points on the surface of the mesh having 

occupancy of one and zero otherwise. Alongside supporting non-watertight meshes, 

there was also proposed a method to support completely open meshes by converting 

open meshes into almost closed meshes, greatly increasing the number of models the 

technique can voxelise. 

 

Possible Extensions 

Although not full voxelisation methods, there exist a few other methods extending 

already existing methods to improve them, like the method mentioned earlier (Li et al., 

2023) that extends surface voxelisation methods to allow them to achieve solid 

voxelisation as well. 

Similarly targeting SVOs, Baert et al. (2013) proposed a method to voxelise higher triangle 

models or voxelise at higher resolutions by partitioning the voxelisation, then ensuring 

the voxelisation is produced in Morton code order. This voxelisation can then be 

streamed out using their method to construct a SVO out of core, which allows it to 

combat potential memory limitations. The voxelisation method that they use to 

showcase their extension is the triangle voxelisation method of Huang et al. (1998). 

Another extension to voxelisations was proposed by Zhang et al. (2018b) to combat a 

couple errors that they found appeared commonly in voxelisations. Specifically, they 

developed a method to better conserve material aspects of voxelisations by fixing both 

the thin cover problem and the two-side problem. The thin cover problem arose from thin 

layers not correctly being identified as the surface when choosing voxel material (see 

Figure 8), this was fixed by the implementation of a depth test to correctly identify the 

material a voxel should take on. Then the two-side problem arose from two thin layers at 

opposite sides of a model, it was fixed by adding side detection and storing both 
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materials for voxels that are occupied by both sides of the model, with a flag system to 

allow identification of whether a voxel is two-sided. 

 

Suitability for Destructibility 

In terms of suitability by supporting the greatest number of models, the differentiable 

method (Luo et al., 2024) and point-in-tetrahedral (Chen et al., 2021) have an advantage 

over many other methods by supporting non-watertight models. The differentiable 

method describing a technique to even support open meshes leaves it being possibly the 

most suitable when number of models is considered. All possible extensions listed 

should be strongly considered as the ability for adding solid voxelisation (Li et al., 2023), 

better storage in SVOs (Baert et al., 2013) and solving issues to better retain material 

properties (Zhang et al., 2018b) are all important features that voxelisations would desire 

to better replace 3D models.  

For complexity and efficiency, more up to date methods like the equidistant scanline 

with gap detection (Delgado et al., 2024) are very desirable for their ability to voxelise in 

a single pass of the GPU. However, in terms of a tool that pre-generates the voxelisations, 

the efficiency is of less importance, and the ability to properly voxelise the models that 

may require conservative and thin voxelisations is more desirable in methods such as 

the box-triangle overlap test by Schwarz and Seidel (2010). 

 

Figure 8: An example of the thin cover problem (centre) being solved (right) (Zhang et al., 2018b). 
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Rendering many voxels 

An area where efficiency is of great importance is the rendering of the voxels, as higher 

resolution voxelisations will have many voxels to render, and the ability to render more 

voxels will allow more models or higher resolutions to be supported. Outside of rendering 

voxels for games, there has been much work focused on visualisation of volumetric data 

for scientific visualisation where there is often a large amount of data to display. As there 

is too much literature to cover fully, for a deeper look into volume rendering the reader is 

referred to the review on large-scale volume visualisation (Beyer et al., 2015) and a more 

recent review that focus on techniques beyond structured data (Sarton et al., 2023). 

 A notable example of volume rendering that has been built open for scientific 

visualisation is GigaVoxels (Crassin et al., 2009) which loads smaller voxel grids dubbed 

bricks based off a last recently used method, that uses casted rays to discover what data 

is missing. The method ensures only the data required for the currently desired level of 

detail (LOD) is loaded and can easily support filtering through mipmaps and the use of a 

SVO, or similar, data structure. To store the data on the GPU, a large 3D texture is used 

which forms the brick pool and another to store the nodes of the used tree. This works 

very well for real-time rendering of static data on the GPU, especially with a recent 

enhancement (Richermoz and Neyret, 2024) that uses dynamic parallelism to improve 

GPU utilisation. Some examples of their approach rendering data that consists of billions 

of voxels can be seen in Figure 9. 

 

Figure 9: Large volume data rendered by GigaVoxels (Crassin et al., 2009). 
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On the other hand, the GigaVoxels method cannot be trivially changed to be dynamic, as 

only the visible voxels are loaded it would not be simple to add simulation to the scene 

of voxels and, should the voxels be simulated, updating the tree structure could be a 

costly task. Somewhat targeting this issue, Sarton et al. (2020) developed an interactive 

volume visualisation pipeline that also allows processing data that is not visible. This 

could be investigated further for its suitability for a simulation where the voxels in a scene 

cannot all fit into memory. 

 

Data Format 

Memory efficiency is a difficult challenge in rendering pipelines when it comes to 

rendering voxels, which is regularly combatted by choices of data structures that reduce 

the memory footprint of storing the voxel data. In the literature VDB (Museth, 2013) was 

created as a more flexible structure to be used for various volumetric data purposes, 

then later tweaked to form NanoVDB (Museth, 2021) to make it more viable for GPU 

usage especially for static sparse voxel grids. Similarly, GVDB (Hoetzlein, 2016) and its 

recent extension of Depth-Box VDB (Xu et al., 2024), manage to leverage the GPU to 

achieve real-time rendering of sizable volumetric data by ray casting. 

Mostly the data structures mentioned above are similar to SVOs which is suitable for 

sparse, coherent volumes, however, some consideration should be given to the potential 

downside of these structures compared to dense, non-coherent volumes as brought to 

light by Nousiainen (2019) and Hadwiger et al. (2017). Generally, some form of data 

structure would be preferable to the high memory cost of the raw data. Recently hybrid 

voxel formats have been investigated (Arbore et al., 2024) to improve efficiency of ray 

intersections and storage, finding that a combination of raw and distance fields could be 

a more effective format when attempting to ray trace voxel data. 

When tree branches of the data are similar, directed acyclic graphs (DAG) can be used 

to prevent having to store similar branches more than once, letting a parent node point 
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to the same child node. A paper (Dado et al., 2016) utilised a custom compression 

method for the colour data in a scene to still be able to represent the voxels in a DAG 

when the colour would otherwise prevent similar branches from being compacted.  

Although these formats for voxel data have proven performance benefits when rendering 

voxel data, it can be difficult to perform updates or simulation on the voxels due to the 

requirement to update the data structure alongside which led Wang et al. (2023) to 

develop a framework to enable real-time interaction with volumetric data. Similarly, van 

Wingerden (2015) explored the benefits of unstructured data and its natural benefits 

when editing the data is desired. 

 

Rendering Methods 

Simpler methods for rendering voxels that do not rely on the data to be structured in a 

particular way exploit the natural ability of the GPU to rasterise triangles, often utilising 

the geometry shader of the programmable graphics pipeline to create the geometry to be 

rasterised. Mileff and Dudra (2019) describe a method for rendering smaller sets of 

voxels, as well Poxels (Miller et al. 2014) triangulates the voxels to render them like a 

mesh usually would be. Also exploiting rasterisation, Jabłoński and Martyn (2016) 

rasterise voxels into screen space billboards, but they differ from the other two methods 

by storing the voxels in a SVO (see Figure 10) with mipmapped textures to allow LOD 

performance optimisations when rendering. 

Figure 10: Example of what the SVO looks like Jabłoński and 
Martyn’s (2016) implementation. 
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Another technique that leverages the sparse voxels (Sun et al., 2024) instead projects 

voxels into image space then sorts them so that a ray cast can evaluate the colour a pixel 

should take. However, the method is focused on novel view synthesis so its benefits to 

rendering voxels for simulation is uncertain. Potentially the most applicable paper that 

fits the needs for games is by Majercik et al. (2018) which supports the rendering of 

arbitrarily orientated voxels with no precomputation or spatial data structure. This allows 

it to support fully dynamic scenes where voxels could change every frame. They achieved 

real-time rates when ray casting when rendering large voxel scenes including animated 

ones. Though looking into leveraging some form of spatial data structure, with fast 

updates when simulating the voxels, could speed up their algorithms to allow more 

scalability in the scenes that can be rendered, especially if the amount of data does not 

fit into the GPU memory as is often found in scientific visualisation applications. 

 

Important Considerations 

Considerations into data format and structures is important for the rendering speed of 

voxel data, required in cases where data cannot fit in memory, consideration needed 

though in the cases of updating these structures when the scene updates. Not previously 

mentioned but the speed in which these structures can be searched can vary, and a 

pipeline (Barnes et al., 2024) for accelerating the search of such structures has been 

investigated.  

Often a technique that finds the most benefits and scales well with increasing numbers 

of voxels is LOD, and for creating worlds that are infinite or scenes with extremely far 

voxels, out of core techniques can be essential for only loading voxels within a certain 

distance of the camera. However, as with all optimisations, the performance effects 

should be measured to determine their suitability. Overall, it seems that the most 

optimal methods for rendering many voxels are ones involving ray casting. 
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Key Takeaways 

When aiming to simulate realistic destructibility it is common to use physically based 

methods. However, these methods are often not suitable for real-time simulation, and 

their use in games would only be suitable in the context of pre-fracturing. When pre-

calculating fracture Voronoi methods are commonly used, but the method by Sellán et 

al. (2023) may be preferred to properly consider the weak points of the model.  

One method found to be more flexible in the way it handled destruction used voxelisation 

and constraints (McGraw, 2024) to simulate destruction of soft bodies. To gain this 

flexibility the models first had to be in voxel form. Many methods to convert 3D models 

into voxel form exist, and when aiming for speed an efficient scanline approach like the 

method by Delgado Díez et al. (2024) may be preferable. As speed of voxelisation is not 

a concern when rendering the models as voxels, the preferred method for destructibility 

would be one that can voxelise a higher number of models. A method that stands out for 

achieving this is differentiable voxelisation (Luo et al., 2024), especially since it has the 

option to support voxelising models with open surfaces. 

Within the context of games many models would likely be rendered at one time. Due to 

this the ability to render many voxels in real-time could become a large concern. The 

scientific and medical visualisation fields provide many methods for rendering huge 

numbers of voxels and can be taken as inspiration when attempting to render voxels for 

games. Methods specifically targeted towards games may be preferable though, as the 

voxels still need to be in a format that lets them be simulated. For this, raytracing 

methods that support dynamic scenes (Majercik et al., 2018) show the most promise for 

ensuring real-time rendering performance that supports the simulation of destruction.  
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Research Methodologies 

This dissertation aims to determine the suitability of using voxels as a primitive for the 

rendering and simulation of destructibility of 3D models. A study has been conducted to 

determine whether it is possible to simultaneously simulate and render voxelised 

models on a typical desktop machine in real-time. 

Artefact  Creat ion 

The main aspects that were required when creating the artefact for this study were the 

voxelisation and subsequent rendering of inputted 3D models. To get the maximum 

control over the performance of these aspects, the artefact was coded in C++ using 

GLFW1 for window handling and Vulkan2 as the graphics API. GLFW was used as it is 

lightweight and easy to setup, Vulkan on the other hand was utilised for its finer control 

over the GPU, and C++ for similar reasons. 

Alongside this, a few smaller libraries were used to simplify parts of the implementation; 

Dear ImGui3 for immediate mode user interface for editing parameters, GLM4 for the 

boiler plate mathematics code, and tiny obj loader5 for a lightweight model loader. The 

use of these libraries allowed the artefact creation to be streamlined, so focus could be 

directed towards the aspects relevant to the research. 

During artefact creation, the differentiable voxelisation (Luo et al., 2024) method was 

chosen for its ability to support a larger number of existing 3D models. During 

implementation the method was first written for the CPU to ensure its accuracy, then it 

was ported to a compute shader to utilise the parallel processing capabilities of the GPU. 

Once voxelisation was implemented, rendering code was implemented with the naïve 

approach of using the geometry shader to generate a cube from the voxel points. Further 

 
1 GFLW – Graphics Library Framework [https://www.glfw.org/] 
2 Vulkan – Low-level graphics API [https://www.vulkan.org/] 
3 Dear ImGui – Graphical user interface [https://github.com/ocornut/imgui] 
4 GLM - OpenGL Mathematics [https://github.com/g-truc/glm] 
5 tinyobjloader – single file wavefront obj loader [https://github.com/tinyobjloader/tinyobjloader] 

https://www.glfw.org/
https://www.vulkan.org/
https://github.com/ocornut/imgui
https://github.com/g-truc/glm
https://github.com/tinyobjloader/tinyobjloader
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rendering considerations were taken, however, the simulation was identified as a greater 

bottleneck. 

As there was a lack of research around voxel simulation, the artefact simulation featured 

a simpler implementation on the CPU. This simulation involved simple physics with 

gravity and axis-aligned bounding box collisions between the voxels. They also had 

collisions with the bounds of the intended simulation area and constraints to keep the 

model together. Constraints were formed after voxelisation of the model and updated 

over the runtime, checking if the difference in velocity surpassed a breaking threshold. If 

this threshold was not overcome the voxels would try and match velocity with their 

constraints through averaging both voxel’s velocities. 

Optimisation in the form of spatial partitioning was required to support the large number 

of voxels being simulated. Spatial hashing was chosen after comparing the suitability of 

a variety of methods, however, deeper analysis into which techniques are best is 

warranted. The option to disable the simulation was also added so that rendering could 

be evaluated in isolation. 

User interface for editing parameters, like the resolution of the voxelisation, was 

implemented for use during testing. There was also user interface for interacting with the 

simulation, by generating an explosion at one of the voxels with a given strength and 

range. Impulse force gets applied to all voxels within the explosion range from the 

source, with the force using the inverse square law of the distance weighted by the 

explosion strength. Depending on the breaking threshold this would lead to the model 

exploding apart due to the differences in velocity. 

 

Artefact Validat ion 

This study primarily employed a performance-based analysis methodology, as good 

performance is integral to game development. Due to this the data gathered from the 
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artefact was the amount of time it took to process a frame, considering both the GPU and 

CPU. To ensure that anomalies have less of an effect, the mean was taken over 60 

frames, chosen due to 60 FPS being the desired performance of the program. The input 

model was reloaded before each test to ensure the integrity of the testing. 

Aiming for a duration of 1000 sets of 60 frames, the artefact’s mean average frame time 

was recorded; the duration was lowered when recording 1000 sets would have taken 

significant time. Several parameters were varied for each test: the resolution, the input 

model, whether simulation was enabled, and whether the simulation was interacted 

with. The main independent variable was resolution, which was the cubic root of the 

number of query points used when voxelising the model. The resolution therefore caused 

a cubic increase in number of voxels. 

The models used for testing were the Stanford bunny and teapot models. These were 

chosen for testing because they are commonly used 3D test models and had a lower 

vertex count, which enabled faster voxelisation. As it better correlated with machine 

hardware the resolution was increased in powers of two, until the performance of the 

test dropped below real-time rates. Powers of two generally support faster algorithms 

due to memory and processors being designed in this binary format. The starting 

resolution was chosen to be 16 as below this resolution the voxelisation was no longer 

identifiable as the input model. 

All the performance values were acquired on a machine with 32 GB of RAM that has a 

transfer speed of 3200 MT/s, an Intel® Core™ i7-11700 CPU with base speed of 2.50 GHz, 

and a NVIDIA GeForce RTX 3080 GPU. Performance was also measured with the program 

rendering at a screen resolution of 1920 by 1080 pixels. For better accuracy data should 

be gathered on a variety of machines, but this was beyond the scope of this study. 
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Data Analysis 

Once gathered, the data was analysed to determine the precision and scalability of using 

voxels as a destruction primitive. For simplicity, the precision of the voxelisation was 

determined to increase with input resolution, as higher resolutions meant more voxels 

to represent the finer details of the model. Scalability of the voxels was determined 

through analysing the performance of both rendering and simulation. 

To determine the overall suitability as primitive for destructibility, inferences were made 

to determine whether the given data suggested that the rendering and simulation could 

be expanded to the larger scale required when creating games. The correlation between 

performance and voxel count was used to estimate the potential performance that the 

implementation could have at scale. 

Due to the large amount of data gathered, the data was tabulated and put into graphical 

form, plotting the performance against resolution. Throughout analysis, the bottlenecks 

were identified to determine the which points are critical when aiming to use voxels for 

destructibility. Performance was compared with and without simulation enabled to help 

identify the bottlenecks. As rendering on the GPU runs separately to the simulation 

before being synchronised, a decrease in performance would suggest that simulation is 

the bottleneck. 

In summary, the performance of the artefact was measured in mean average FPS at 

varied parameters. Such data was then analysed to determine the overall suitability of 

voxels as a destructibility primitive by evaluation of whether they can be rendered and 

simulated at interactive real-time rates.  
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Results and Findings 

During testing, the rendering was tested for two models at 5 different resolutions. The 

two models chosen for testing were a teapot and the Stanford bunny. The resolutions 

started at 16 and increased in powers of 2, leading to the resolutions tested in rendering 

being 16, 32, 64, 128 and 256. 

For simulation less resolutions were tested due to the sharper decline in framerate, 

therefore resolutions of 16, 32 and 64 were tested for simulation. When simulating with 

explosions only the teapot model was tested, at the same resolutions as simulation. At 

resolution of 64, the case of simulating the teapot with explosions had a mean average 

frame rate of 4. Due to this only 100 samples were taken instead of the full 1000, as it 

would have taken around 250 minutes to fully compute the full amount.  

All the other tests had the full 1000 samples computed with each sample being the mean 

average of the past 60 frames. Each sample in the 1000 samples was taken in 

succession, meaning that no frames were skipped once sampling began.  

The number of voxels for the two chosen models to test with can be seen in Figure 11, 

where Stanford bunny has just over double the number of voxels in its voxelisation over 

the teapot model at each resolution. This leads it to require more time for rendering and 

simulation than the teapot due to the higher numbers of voxels as can be seen in Figure 

12. It is worth noting that the Stanford bunny still only occupies roughly 20% of the voxel 

query points, and teapot occupying even lower with less than 10% so a model that 

occupies more space would have even more voxels to be rendered and simulated. 
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When only rendering the framerate stays at real-time rates for resolutions up to 256 for 

both models, then for the Stanford bunny model the framerate dropped below 60 fps. 

There is a negative correlation between resolution and framerate with the highest 

framerates being at the lowest resolution. However, when simulation is enabled, the 

framerate drops much quicker with the framerate getting well below real-time rates at a 

resolution of 64. As seen in Figure 13 for every resolution except the Stanford bunny 

model at resolution of 16, the program is slower when simulation is enabled, becoming 

significantly slower at resolutions of 32 and above. 
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Figure 12: Number of voxels for both used models at different voxelisation resolutions. 

3528
3046

1893
375

56

0 1000 2000 3000 4000 5000

16
32
64

128
256

Frames per second

Resolution

Average framerate of stanford bunny 
at varying voxelisation resolutions 

with simulation disabled

Average Framerate

4742
4571

3109
798

117

0 1000 2000 3000 4000 5000

16
32
64

128
256

Frames per second

Resolution

Average framerate of teapot at 
varying voxelisation resolutions with 

simulation disabled 

Average Framerate

Figure 11: Average frame rate of the rendering the voxelisations at varying resolutions. 



Aiden Knight 32 19/05/2025 

All the simulations in Figure 13 were not interactive with no explosions occurring in the 

runtime of the profiling. When some explosions were added to the runtime the 

performance was generally negatively affected apart from the resolution of 16, with a 

resolution of 64 slowing down even more drastically as shown in Figure 14.  

  

 

 

 

 
Figure 14: Average framerate for simulating and rendering the voxelised teapot at varying 

resolutions with interactive explosions occurring. 

4641

2946

4

0 1000 2000 3000 4000 5000

16

32

64

Frames per second

Resolution

Average framerate of teapot at varying 
voxelisation resolutions with simulation 

enabled and explosions

Average Framerate

4019

1912

14

0 1000 2000 3000 4000 5000

16

32

64

Frames per second

Resolution

Average framerate of stanford bunny 
at varying voxelisation resolutions 

with simulation enabled

Average Framerate

4494

3401

32

0 1000 2000 3000 4000 5000

16

32

64

Frames per second

Resolution

Average framerate of teapot at 
varying voxelisation resolutions with 

simulation enabled

Average Framerate

Figure 13: Average framerate for both rendering and simulating the voxelisations at varying resolutions. 



Aiden Knight 33 19/05/2025 

Figure 15 shows that at resolutions of 16 and 32 the explosion times can be identified as 

drops in the framerate, when looking at the simulation with explosions at a resolution of 

64 the framerate drops and then stays consistently lower for the duration of the program, 

whereas it only slightly lowers at 32 and fully recovers at resolution of 16. The graphs also 

show that the slight variance from the explosions do not fully get picked up in the average 

due to their limited duration regarding the total sample duration. 

Overall simulation enabled was significantly slower than when purely rendering and 

resolutions past 32 led to much steeper drops in average framerate for both. Scaling with 

the cubic increase in number of voxels.  
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Discussion and Analysis 

Visuals 

With reference to Figure 16, the teapot can be seen to have significant errors in visual 

representation when voxelised at a resolution of 16. This is likely due to the lower 

percentage it occupies of the query points as well as the thinner structures that require 

voxelising. The Stanford bunny still maintains its fidelity at resolution of 16, however, 

both models reach an adequate level of fidelity at a resolution of 32. This is assuming 

realistic visuals are not desired.  

These models did not come with textures or materials and currently the implemented 

voxelisation does not support the maintaining of these visuals as it is outside the scope 

of the rendering considerations. Each voxel does have an independent colour which 

could be set based on a texture or material in the future, so the rendering performance 

should not be affected by these additions later. 

Given the evaluated performance, an interesting trade off can be made between the 

fidelity of the voxelisation and the desired performance of the program. Higher input 

resolutions significantly reduce the performance but also give more accurate visuals. 

This would also mean that larger models would likely be less performant when it comes 

Figure 16: From left to right both used models (teapot above, Stanford bunny below) voxelised at increasing 
resolutions (16, 32, 64). 
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to simulating their destructibility with voxels, as they would require a larger number of 

voxels to properly capture their details. 

A similar statement can be made on the voxelisation, depending on the level of detail 

wishing to be captured from the model. For example, high poly models often have many 

smaller details that would not be captured at lower resolutions when voxelising. On the 

contrary, low poly stylistic models would not require a higher resolution to capture their 

details. This suggests that games that aim for performant voxel destructibility might 

prefer more stylistic art styles, and that certain styles would not be manageable in real-

time voxel simulations. 

 

Rendering 

Only considering performance of the rendering, the framerates are still largely above 

real-time, only just dipping below 60 FPS when rendering the bunny at resolution of 256 

with 3,373,296 voxels being rendered at once. Assuming the bunny model’s percentage 

occupancy of roughly 20% is close to the mean average for 3D models, then at a 

resolution of 32 over 500 voxelised models would be renderable at one time. This also 

assumes that the position of the voxels does not have a significant effect on the 

performance, so testing would still be required. Extra rendering optimisations like level 

of detail and frustrum culling could also boost performance when rendering larger 

scenes containing many objects. Therefore, significantly more than 500 voxelised 

models could be rendered simultaneously should these optimisations be implemented. 

The further rendering considerations discussed from the literature should also be 

implemented to evaluate their performance, especially as the number of voxels may 

increase to a point where they do not fit in the available memory of the GPU. Specifically, 

the raytracing and alternate data formats that can be used alongside raytracing, could 

be essential for performance that is more scalable. 
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Simulation  

On the other hand, although rendering was performant at these voxel counts, the 

performance dropped significantly when simulation was enabled. It is difficult to make 

inferences when considering the scalability of the simulation as when interacted with the 

framerate dropped considerably, suggesting that the spatial partitioning did not hold well 

when handling objects spread out across the scene. This would be a key requirement 

when considering the larger scale that levels operate on. 

Another reason that causes the simulation’s scalability to be more difficult to evaluate 

with the data gathered is the sharp decline in performance between resolutions of 32 and 

64. For both models used the performance drops from over 1000 FPS to well below real-

time rates, making it harder to evaluate the rough voxel count where the artefact was still 

suitable for interactive destruction. 

At resolution of 32, the simulation still has a significant margin of frame time to work with 

for interactivity. So, for smaller scale simulations voxels would certainly be suitable, 

however, the simulation is a large bottleneck when it comes to the wider application of 

voxels as a destruction primitive. Further investigation and research would be warranted 

to improve the performance of the simulation. Cases where there are multiple voxelised 

models interacting should specifically be investigated to better emulate game scenarios. 

Overall, the performance behaved as expected, dropping dramatically due to increases 

in resolution causing large cubic steps in the number of voxels to simulate and render at 

one time. 
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Limitations  

There were 4 key limitations identified in the approach adopted by this study. 

1. One limitation of the study was the lack of testing across different computers with 

varying hardware. To ensure the suitability for use in games, the test should be run 

multiple times at hardware specifications at differing qualities. This is needed to 

truly verify if voxels are suitable to be distributed across all game platforms. For 

example, mobile devices generally have more restrictive demands when it comes 

to performance but also has a thriving market for games. 

 

2. The test could also have been impacted by other software currently running at 

point of testing. This could have been what impacted the performance when 

rendering the Stanford bunny at a resolution of 16, causing it to perform better 

when tested with the simulation enabled. 

 

3. One limitation of the research methodology was a proper investigation into the 

visuals of the program. Although some claims were made based on the clear 

errors in visuals of the voxelisations, a proper study into the effects of resolution 

on the visuals should be undertaken. This would allow feedback to be acquired 

from external sources to determine which resolution would be desired from a 

visual standpoint. With a desired resolution established, more focus could be 

directed towards optimisation of the rendering and simulation at that level. 

 

 

4. Given more time, a larger variety of models from wider sources should be 

considered to better make judgements on the suitability and scalability. As 

mentioned, multiple models should also be tested together as this would better 

represent the dynamism of game worlds. Testing the performance at smaller 

steps in resolution could also be more beneficial when showcasing the effect that 

it has, especially in the cases of simulation where the performance drops sharply. 
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Reflection on  Object ives 

In the objectives, the main question posed by the methodology was whether it is possible 

to simultaneously simulate and render voxels for destructibility in real-time. The results 

of the study suggest that it is possible in smaller projects, but when extended to larger 

scenarios like games, a lot more work needs to be done to improve the performance of 

voxels as a destruction primitive.  

Due to the under-exploration in the areas of simulating voxels for the use of destructibility 

the bottleneck in achieving the goal was identified to be the simulation. Inspiration from 

other simulation research would be desirable to explore what could be done to properly 

make voxels a viable candidate for a real-time destructibility primitive. 

 

Artefact  Reflect ion 

For creating the artefact, the chosen graphics API was Vulkan, though due to scope and 

bottlenecks in the simulation, was underutilised. Originally the finer control over the GPU 

was intended to be leveraged as argument for the added complexity of using Vulkan, but 

the same solutions would likely be more manageable to implement in simpler APIs. This 

would have allowed more time to be dedicated to the other details of the study, as 

discussed in the limitations. 

The method of differentiable voxelisation (Luo et al., 2024) had effective results for what 

was required in the implementation, but other voxelisation methods may lead to the 

same result and be in a better format for rendering and simulation.   
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Conclusion 

Simulating destruction with voxels managed to successfully handle differing strengths 

and positions of explosions to break apart the test models. This allowed a high level of 

dynamism when breaking apart a model over some of the more traditional approaches 

that only give a preset way for objects to break apart. Where the voxels do see a 

disadvantage is on the realism of breaking apart, as the destruction will suffer from being 

very blocky in comparison with other destructibility methods. 

In the context of providing entertainment to players this is not necessarily an issue as fun 

can be had outside of the context of realism. Further research would be required to 

determine whether the use of this less realistic destruction has a significant effect on the 

enjoyment or immersion of players. Similarly, it should be confirmed that this destruction 

can provide more enjoyment than other destructibility approaches, as otherwise it may 

be preferable to use more realistic looking approaches. 

It is, however, clear that the destruction correctly uses the benefits of voxelisation to 

allow models to split up into chunks that may then split again and are not limited to only 

the initial fracture. The only limit to the destruction is created when the resolution is 

chosen for voxelising the models. To this end, the performance is obviously crucial to 

getting the most out of using voxels as a destruction primitive, with better performance 

allowing more dynamism to be achieved with higher resolutions. 

The ability to utilise previously created 3D models in voxel environments would speed up 

the process of creating games that want to leverage voxels as a destruction primitive. 

Research around voxelisation is in abundance, and the implemented method proved 

sufficient for demonstrating destructibility. However, more work needs to be done to fully 

utilise existing 3D models as none of the data other than the shape of the model is 

retained.  

Games without realistic visuals have still found recent success and were once the 

standard due to hardware limitations. So, prioritising dynamic environments that let the 
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player find their own fun within a game, could lead it to success. The results of the study 

prove that voxels are not far off being easily usable for this. 

The building blocks for creating an environment that innately supports destructions 

through representing the models as many individual voxels has been provided. 

Optimising the simulation by leveraging the GPU or techniques in other areas of 

simulation, could push voxels towards the position of being a standard primitive for 

implementing destructibility in games where realism is not the concern. 

When it comes to the required preprocessing steps to using voxelised models for 

destructibility, unless wanting to upscale the resolution of the voxelisation at a later 

point, the preprocessing should only need to happen once for other use cases. Adding to 

this, the method implemented in the performed study was efficient enough that 

regeneration would not be a long process. What could be a benefit in terms of 

preprocessing, is a way to extract only the surface voxelisation for models which one 

would expect to be hollow. For example, the teapot model would likely be expected to 

not have a solid inside. 

The artefact created for the study had a simple physics system with fixed constraints so 

it could showcase the ability for voxels to be used in destructibility. This all was self-

contained outside of where the rendering of the voxels was happening. Due to this the 

rendering implementation would easily support flexibility in the way the voxels are 

simulated, and more accurate simulations could be created where desired. Where this 

becomes even more desired, is when considering the complexity of adding additional 

gameplay features that interact with the voxels. Having the rendering for the voxels 

encapsulated would aid in reducing this complexity. 

Overall, the performed study has been a sufficient precursory investigation into the 

possibilities of using voxelisation on existing 3D models as a system for simulating 

destructibility in games. There is a lack of research into the use of voxels as a primitive in 

games and more effort should be targeted towards investigating this. The benefits voxels 

provide can span multiple aspects of game development, as voxelisation can often be 
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used as an initial step when performing other calculations such as pathfinding and 

lighting. If further work was done, voxels as a primitive could immediately support these 

use cases.  
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Recommendations  

Although the literature was well reviewed, there were plenty of gaps in research directed 

towards the methods for simulating voxels. Accumulating techniques from other parts of 

simulation research and investigating the techniques specifically suitable for voxel 

simulation could significantly improve the results from simulating destructibility with 

voxels.  

Specifically, comparing various spatial partitioning methods, especially the combination 

of them could significantly reduce the effect of simulation on the performance. These 

considerations should be the larger focus in future studies, as the performance of 

simulating destructibility is crucial to allow it to be used as an interactive element of a 

game. 

Lots of research was done into methods for rendering large numbers of voxels, however, 

in the context of interactive games they were not fully considered for their ability to be 

used alongside simulation of the voxels. Due to the bottleneck provided by the 

simulation, the performance of the rendering was not further developed and should be 

investigated more in the context of games. To achieve this, the voxelised models should 

be placed in an environment more akin to a game’s environment. Lighting, shadows and 

other rendering effects like post processing had no consideration when it came to the 

rendering of voxels in the performed study but are used often in rendering elsewhere. 

The performance of the discussed features should be tested on other hardware, and 

specifically the current generation of consoles, or even mobiles. These make up large 

parts of the game market and not considering them could lead to games built with a voxel 

destructibility system locking themselves out of those markets. 

One of the gaps in this study that needs addressing, is the lack of feedback from potential 

players. Further work may want to determine if voxel destructibility is desired by a large 

enough group of people. Especially investigations into the specific desires and 

expectations could streamline future research into this area. Without this, the lack of 
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graphical fidelity for example, could prevent players and developers from desiring the 

use of voxels in games. 

Similarly, the chosen set of models was very limited, and further work should investigate 

the use of other 3D model formats, alongside confirming the effectiveness of the chosen 

voxelisation for its ability to support many 3D models. Whilst looking specifically at 

visuals, much work should be done to support materials and textures. The normals of the 

models could also warrant preserving to support lighting systems. In general, the visuals 

of the voxelisations deserve further work before they can be fully adopted in games. 

However, many limitations and recommendations are minor in the context of an initial 

study into the use of voxels for destructibility in games. The evaluated performance 

suitably covered the initial requirements and has correctly identified the points of future 

research required. This is the main purpose of the performed study as the significant 

gaps in research needed to be identified, and the performance of simultaneously 

rendering and simulating voxels was measured to properly identify whether voxels could 

be further used in this way.  
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