

Efficient and Secure Satellite-Ground Communication An AI-Driven Quantum Computing Approach

Designed by

Silman Arachchilage Niroshana Pamuditha Kulathunga S021987M

Supervisor: Dr. Mahsa Zolfaghari

Research Question

How can we achieve secure and low-latency satellite to ground communication using quantum key distribution, while optimizing performance with AI?

Focus Question

Secure low-latency satellite-ground communication

Key Technology

Quantum key distribution (QKD)

Optimization

AI-enhanced performance improvements

Aim & Objectives

Aim

Design and evaluate a quantum-secure satellite-ground system using BB84, AI, and error correction.

Objectives

Simulate BB84 QKD with noise and photon loss

- (02) Apply Shor's Code for quantum error correction
- 03 Optimize latency and success rate using AI

• Analyze with MATLAB & compare with classical methods

Research Gap

No current implementation unifies BB84 QKD, Shor's Code, and AI latency optimisation in satellite-ground simulation

S021987M

Literature Insights

Micius satellite	QKD Security Limits	Quantum Error Correction	AI in Network Optimisation
Yin et al., 2017	Pirandola et al., 2020	Laflamme, 2022	Saeed et al., 2022
Micius satellite achieved space-based QKD over	Practical limitations in QKD	Shor's Code boosts error tolerance	Enhanced routing, beamforming, prediction
1200 km			

Methodology

Design-Based Research

Iterative development approach

Tools

Python, Qiskit, IBM AerSimulator, MATLAB

Process

 $Code \rightarrow Simulate \rightarrow Export \rightarrow Analyse$

Tools and Platforms

S021987M

System Architecture

Al-powered Quantum Satelite-Ground Communication

This system integrates BB84 protocol, Shor's Code for QEC, and AI latency optimizer.

Design & Implementation

BB84 with Noise

Simulated realistic quantum channel errors

Shor's 9-Qubit Code

Implemented for error resilience

Al Tuning

Optimised latency and key generation success

MATLAB Export

Quantitative validation through plots

Results & Analysis

Observations

- Latency↓~18%
- Success Rate ↑ to 100%
- QBER \downarrow from 9.3% \rightarrow 0.5%

Matlab Results & Analysis

Figure 29 - Classical vs Quantum Latency Comparison

Evaluation & Reflection

Strengths

Integrated solution, custom simulation code, accurate MATLAB analysis

Limitations

- Real-time satellite hardware not tested
- Classical AI models used, not quantum ML

Validation

Consistent results across simulated satellite parameters

Conclusion

- Shor's Code reduced QBER by up to 65%
- AI Optimization reduced latency by ~18%
- 100% key agreement rate sustained across noise levels
- Quantum setup outperformed classical in secure key generation and adaptability

FutureWork

Post-quantum cryptography integration

Deploy in real optical satellite testbeds

Use quantum-enhanced AI models

Thanks For Your Attention