Mobile Games Development Critical Evaluation – Regan Akers, a012367k
My first experience developing a mobile game came with plenty of lessons, that I will be able to use and apply in my next project. Before starting this project I had originally planned in my game design document to include Unity Ads as a form of monetization in my game. Unfortunately, I wasn’t able to implement the ad functionality, for a few reasons. Testing my game on my iOS device proved near impossible, with all of my mobile testing being carried out in the device simulator, because I would need access to XCode or an app store developer kit in order to test and implement these ads. I tried workarounds, like installing Unite Remote 5, which seemed great however I couldn’t get it to load my project onto my phone. Not being able to access Xcode meant that I wasn’t able to resolve my iOS mobile dependencies in engine, and therefore use the SDK. I added the logic of both ads and in-app purchases into my game, which I hope can prove that I had a good monetization strategy, despite it actually being in the game.
My use of the factory design pattern through object-oriented programming made developing things like my enemies a lot easier. Being able to create a parent class, with the base functionality of my objects, then create children that would expand upon that base class saved me a lot of rewriting my code. This design pattern also ensures that my game is highly scalable if I was to expand, as I have this base enemy class now that can be used for any enemy I wish to implement into the game.
I used the Singleton Pattern on a lot of my manager objects to prevent having to get references to each in whatever scripts I wanted to use them in as I now have a global access point. This helped decouple my project massively, and made it very easy to call functions that I’d need to access in lots of places, like my Audio Manager for example. This was my first time trying to build a solid audio system, that wouldn’t require me to handle all of variables and logic in the specific classes, which made tracking audio cues a little more difficult. This audio manager class consisted of an enum of sound types, and a function that will play an audio source based on the sound type passed into it. In my head this was the best approach to solving my audio issues, and I am still not sure if that was correct or incorrect, but I found myself having trouble when the list of sounds grew and grew, reaching about 25 at its current state. All in all, this helped me keep my code organized a little better. One problem I had with my singleton classes was ensuring that these classes truly only had one instance of them.
I relied heavily on the Observer pattern for my mobile game, using C# events to call functions in different classes at appropriate times. This pattern helped me decouple my project massively, meaning that no component relied on much else to function. Towards the end of the project, I found keeping track of all my events to be a little difficult, as in some situations I would find myself making two or three, that would occur a short period of time between one another, as I wanted to execute certain things at very precise points. If I was to do this again, I’d look into other options for things like this, such as IEnumerators or interfaces, which I have no experience with in Unity.
In this project I saw a great emphasis on polishing my game, reaching a level of attention to detail I didn’t realise I was capable of. Things like ensuring levels transitioned smoothly with a fading scene component, creating smart sliders to make health bars more interactive, menu animations to make navigation satisfying, and randomly adjusting the pitch of sounds to reduce repetitiveness. I focused on the tiny little details, that add up to make the players entire experience, like lighting changes, audio, and visual effects, which I now realise are some of the most important aspects of a video game, as they help a player really indulge themselves in the experience, and I hope that people that play my game can experience that immersive experience I was aiming for and found myself deep within at points during testing.
Another thing I would look to implement is creating more levels, with different enemies for the player to unlock and challenge, each with an increasing level of difficulty. This implementation would probably require some sort of upgrade system out of the core game loop, because players will need some form of character progression to face these harder levels, and feel satisfied progressing through the game. I have considered options like a talent tree system, where you can unlock points based on level completion, or enemies killed. Another option would be to implement some sort of equipment system, that buffs certain stats on your character, which has been done in popular games that are similar to mine.
I would also love to add a level of customization to the game, adding in different weapons, allowing players to play the game in their own style. Each weapon having different rates of fire, and bullet spread, allowing players to explore options for builds, with some being more advantageous in some situations.
Developing my first mobile game has been a challenging yet rewarding experience. Mobile Game Development has always been a big interest of mine and after making my first it was a completely different experience to what I was expecting. Mobile games are typically a lot simpler in terms of design, and on average can be completed a lot quicker than a PC game. It came as quite a surprise to me when I reached ‘completion’ of my game just how much I’d have to put into it, and there’s still so much more I want to add. This is the most I’ve ever put into one of my modules to date and has really re-ignited that passion and excitement for games development I had when I first started my degree. This project has me itching to get working on another passion project and to begin filling my portfolio with well-polished games like this one and apply all of the things I have learned about programming, development and the Unity Engine to continue improving my games.
