
Lego Portals
Technical Design Doc

By Luke Brown

B017629L

1



Context Page

2

Title Page(s)
Controls 3

Project Introduction 4 - 5

Platforms 6

Systems and Diagrams 7 - 16

Diagrams in Action 17

Optimisation and 
Profiling

18

Coding Standards 19 - 20

Production Overview 21

Reference List 22

To Access my YouTube playlist on the development of this project.

CLICK HERE

https://youtube.com/playlist?list=PL4771QELqTfVsiWQHpOa1TjtLwmWBFG6-&feature=shared


Controls

3



Project Introduction
Project Goals
The goal of this demo is to create a Prototype of a Lego game 
featuring most of the essential mechanics/features that a Lego game 
would feature. I wish to create a Lego game that combines aspects of 
both the classic Lego Games, and Valve’s Portal Series. I want the 
main character to have a Portal Gun Ability that allows them to fire 
portals in the scene to complete puzzles, as to how I will go about 
that, I will learn along the course of this module.

Challenges and Risks
There are many possible things that I want to complete to learn how 
it was made but in Unreal. Lego Building has been a major mechanic in 
the Lego games, and I have always been curious as to how they are 
developed, whether it is that they are separate pieces that gets put 
together or if they exist as one object like a skeletal mesh and 
would animate being together. The Portal Gun is another area I feel 
would be a nice challenge to implement due to how the Lego games had 
their aiming system dealt in contrast to the Portal series which is 
in First Person. I also have a deep interest in modular systems and 
improving my knowledge in these areas and I feel the Lego games are 
the best method for me to learn this as they aften feature similar 
mechanic but open to be changed in ways, like how they likely 
featured a base Lego character that would be incredibly modular for 
adding different abilities and models.

4



Project Introduction
Hardware Requirements
In terms of hardware, this will be developed for the PC, and I will 
be using the Universities PC’s but will also be using my own personal 
device and my device is weaker than the Universities with only a 2060 
Nvidia Graphics card while theirs features a much more updated 
graphics card so it will be nice to see the difference in how my game 
will perform on different hardware.

In terms of the development side rather the build, Both PC’s will be 
using Unreal Engine 5.2 and other external software. As to what 
software, they could vary during the course, but I will presume that 
I will end up using Photoshop, Premiere Pro, A modelling software of 
sorts (if I have the time), and other software that could possibly 
assist in developing this game.

5

Minimum 
Requirement

Overkill 
Requirement

OS Version Windows 10 Windows 10

CPU Quad-Core Intel/AMD 
(2.5GHz)

8-Core Intel/AMD

Memory 8GB 16GB

GPU DirectX 11/12 - Nvidia 
Geforce RTX 2060 6GB

DirectX 11/12 - Nvidia RTX 
3090 24GB

Storage 600MB 1GB



Platforms
Target Platform
This will be developed for PC as it is the easiest way to test when I 
am building my project, and it allows a safe set for creating a build 
that works and leaves it open to add controller settings for further 
testing.

In the future I would love to attempt a working console version 
though this only would work if I had a way to test with console, as 
of now I have tested with controller input, and it works relatively 
well from my test.

Engine Summary
The Engine version of my Unreal Engine project will be in 5.2 as it 
is the most updated version that is also available on the University 
PC’s. I currently do not have any plans to use a plugin on my project 
as I feel the version has everything, I need to develop the demo and 
other external software can assist me.

In comparison to the other Engines available, Unreal offers the best 
for what I wish to accomplish, not only this but I feel much stronger 
with Blueprinting these ideas than coding in C# or C++. Using an 
engine Like Unity has shown in past experiences that it is better for 
usage on 2D games, whereas Unreal is perfect for 3D development as it 
offers many tools for creating 3D experiences with improved lighting 
options than Unity would have.

Debugging is another area I feel is great in Unreal though Unity has 
also got a great method for debugging content. I feel that Unreal is 
better for the number of options that I know of to help debug 
blueprints that aren’t working.

6



Systems And Diagrams
These slides are dedicated to all the main mechanics/systems of my 
project and some from the games that I have researched into. There is 
an explanation to them and a diagram to help showcase how they all 
work. All Diagrams were made Using Miro ().

System 1 – The Portal Gun
The Portal Gun is the biggest area I wanted to be done right in my 
project, and while I did not manage to complete it with the UI method 
classic Lego games Possessed (Brown, L., 2024f), I so believe that 
this is still a great concept for the Portal Gun and with more time 
in the future, I can get the UI aiming system working.

7



Systems And Diagrams

8

System 2 – The Portal System
This system continues from the first where in this instance, once the 
gun has fired, will begin the projectile launch, if the projectile 
hits the portal walls it would then move one of the two portals to 
that location. This system loops if there are multiple portal walls 
that were detected in the Portal guns Aiming.



Systems And Diagrams

9

System 2 – The Portal Walls
The Portal walls continue off the projectile and basically these are 
the check for the player and the check if the portals are accessible, 
by that it means that in my game, the portals already exist in the 
world and that when the player fires to a portal wall, the portal 
moves over to that wall, but the other one is still below the map. 
This system prevents the player from accessing that area.

The Portal in Action
I have Listed a video Link () to showcase how everything works in 
game, and here are some images to demonstrate this system.



Systems And Diagrams

10

System 4 – The Build Mechanic 
This system is a must have for Lego games or else it doesn’t meet the 
purpose of being a Lego Game. In my game the Player would walk over 
the buildable object, either it being a Companion Cube or Pressure 
Plate. As long as the player is holding the interaction Key, the 
object would play the building animation. Once the animation is 
complete, it will remove the Skeletal Mesh that the animation is 
using and replace is with the built static mesh version. During my 
final time testing and documenting I had soon discovered that some 
Lego games had it so the animation would just pause when stopping in 
the middle of building whereas my one reverses everything back, I 
feel that I will change this to the other method because after 
testing it looks better that way.



Systems And Diagrams

11

System 5 – The Stud Spawner
The Stud Spawner is used when the buildable objects are complete. In 
the future when I implement destructible objects, I can incorporate 
this stud spawner with it to make studs appear each time you hit the 
object, until it explodes.

Here we can see it in Action:

The Studs will spawn outward and when 
the player collides, it will move to 
the UI



Systems And Diagrams

12

System 6 – The Built Companion Cube 
Connecting to the Build Parent, the Companion Cube has a system in 
play for when it is built or else there would not be much a reason to 
build the object. The cube can be picked up by the player and 
dropped, this allows the player to move the cube to locations. In the 
future, I plan to add systems to prevent the cube from going through 
walls while it is picked up as the player could mistakenly pick it up 
and drop it through a wall and it would be gone.



Systems And Diagrams

13

System 7 – The Built Pressure Plate
Similar to the Companion Cube, this object would also follow after 
the build system and once built the plate would detect the player and 
the cube and if it detects them standing on the red centre, the plate 
will drop down and activate any connected actor it is linked to. If 
the player or companion cube is not on the plate, the plate will 
return back up and deactivate the object.



Systems And Diagrams

14

System 8 – The Studs
Going back from the Stud Spawner, The Studs are the object that 
spawns from them or are in the level thanks to splines. The studs 
have a rotating movement component that will allow the actor to spin 
like the Lego games/UI. The Stud gets its worth from either the 
editor if it was to be spawning from the spline or in singles, or the 
Stud Spawner. Once the worth has been set it would set the material 
of the stud to align with its worth and when collected, would create 
a UI popup of the stud you created into the players screen and would 
move over to the players score count. While that is happening, it 
will get rid of the initial 3D stud in the world to naturally make 
them move over to the UI. 



Systems And Diagrams

15

System 9 - The Lever
The Lever link many other objects like the cube and plate, follows a 
parent class of the Interaction System, which Is explained in the 
Next Slide. The level is designed to be modular for being singular 
use levers and multiple use levers, with possibility in the future 
for character specific levers. When the player taps the Interaction 
key, the player will move to the lever and pull it, if the lever only 
requires one to be pulled the task will complete to activate its 
connected object, if there were a need for multiple levers, a timer 
would begin when pulled and if you do not pull the other lever in 
time, it will reset all levers, but pull all levers and it will 
complete the task and remove the timer from happening.



Systems And Diagrams

16

System 10 - The Interaction System
As mentioned in the previous slide, most of the objects share a 
parent Interactable class, this is to save time when adding events 
for moving the player over or whether to detect when the player taps 
or holds the interaction key. If the player were to tap or hold on a 
child class that uses either event or even both, it would normally 
move the player to a target spot, in the instance of the build 
mechanic, this follow spot would be spinning around the buildable 
recreating the classic building system (Brown, L., 2024f) of the older 
series.



Diagrams in Action
The Diagrams’ Showcase screenshots that I could not fit in their 
slides are present below:

System 7 – The Pressure Plate

System 6 – The Companion Cube

System 9 – The Lever

17



Optimisation and 
Profiling
Profiling Systems
Ensuring that systems are all working comes thanks to the Breakpoint 
system that Unreal presents. I will always use these if I want to 
understand what is happening in my scripts and ensuring that what 
needs to be called is called. 

I will often also use Debugs such as Print string or Debug draw for 
when I wish to incorporate collision checks, as my project does 
feature this, in the build these do not get shown as when I build the 
game, I set it to a mode where Debugs would not normally appear.

There was an issue throughout my project where debug draws would not 
display causing me to find other outlets for testing collision 
detections. The Aiming system had been one of the major struggles to 
implement due to this and it is why the final build features the 
Arrow when aiming, initially it was planned to be a UI based aiming 
system though problems with the draw debug and other perspective 
screen size-based problems cause several delays causing me to find 
another method for aiming the portal gun, which a suggestion from a 
lecture was what I followed and had a raycast line from the player 
which has that arrow to see where around would the raycast be 
detecting. This method worked though I still feel that in the future 
I will be changing it to the UI method as it was very close to 
working the way I wanted it to.

Profiling Graphics
When it comes to the Graphics side of things, it more commonly is 
used when I have any form of assets placed within my game, or that I 
use particles and such. I personally still need to learn this area 
more for my future as it is still an area that I do not work much on 
causing games of mine to feature performance drops when I have any 
assets in the game, the project does feature this minor problem 
though it is not as offensive as my previous projects and can run 
well enough on a mid-grade PC.

18



Coding Standards
Programming Standards
To ensure the project is easy to understand and easy to locate 
everything, I ensure that I keep to a naming convention for the 
project's variables and actors. Actors that are creating in Blueprint 
would have the name structure of “BP_Example” whereas Interfaces 
would have “BPI_Example”. Other naming conventions would be the UI 
“WBP_Example”, or my variables within these would have Floats have a 
capital ‘F’ in the start of each float variable and this would follow 
through with the other components and variables. Folders would also 
follow a structure to allow me to find out what actors/UI/maps etc. 
would go where.

Style Guide
How I make my scripts clean and easy to read

I often have two methods to ensuring the blueprints are clean to my 
perspective. I used Comments to help describe what these blueprints 
are doing, sometimes making multiple comments to explain the path of 
what happens.

I also ensure I layout my blueprints in a clean manner ensuring 
everything is lined up correctly and relatively spread to let the 
blueprint breath and not overcrowd any reader.

Following these two methods ensures that my blueprints can easily 
explain what they do, are easy to locate and read clearly. Below is 
an example of what I consider a clean blueprint.

19



Coding Standards
Commenting Rules
I mentioned before how I comment on my blueprints to help the 
designers, and such to understand what does what in my blueprints and 
to help them understand if there is anything in the blueprints that 
they feel are unfinished, broken or working.

I colour code any comment that I feel would be unfinished or broken, 
often Yellow being the sign that something is incomplete and Red 
being that there is a problem with text that helps explain what I 
mean. White is commonly used by me to showcase that a script is 
working as I normally explain in that comment what it does and not 
any issues and such it may have. The image in the previous slide 
showcases my commenting method with an inclusion to my red problem-
based comment.

Code Review Procedures
Following a similar structure to the Agile method of development 
(Laoyan, S., 2022), Programming mechanics falls into a similar 
structure of planning, programming, testing, and review. When a 
blueprint does not work I would Breakpoint check and Blueprint Debug 
my way through to finding the problems that are present in my actors. 
After I find a probable fix, I test again and see if it improves or 
get worse.

One thing I had also learnt with this project is that each build can 
play differently if not optimised correctly or restricted in ways, as 
for example, my build system had the player rotate perfectly on my 
own device but when I moved to a much more advanced device, it flew 
around the build, adding frame rate caps and restricting that spin to 
not be called every frame allowed a fix to prevent future problems in 
the final build.

20



Production Overview
Moscow
The Moscow is a great method to plan out a project as it perfectly lets the creator 
think what is the most necessary thing to add for different subjects and even down 
the line of should, could and won’t have for the project. It is great at showcasing 
to someone who hasn’t seen the project understand exactly the type of content your 
project would have or not.

Timeline
For extra guidance in keeping on track for tasks at hand, I use two other tools to 
guide me. I use Trello (Brown, L., 2024c) to help create a task list of what 
mechanics/art/animation etc. my game would feature and not always do they have to be 
stuff that is guaranteed to be added as I can always leave them for future purposes. 
A Gantt chart (Brown, L., 2024a) is different because it is more specifically used to 
keep a time frame of when these tasks should be completed. Trello would allow me to 
add subtasks and explanations to them whereas to keep space clean, my Gantt chart 
would be used to plan out the task but only keep the title of a task.

Budgeting
Budgeting for the project would be to see the length of the project and create a 
plan, the Gantt chart and Trello would be the start of that, and you would follow up 
with finding out how well you believe you could create all the tasks from most 
important to least within the time frame you are given.

My project does not feature anything that cost me financially, but it does feature 
assets that were made Using multiple Tools, First, there was Mecabricks (Mecabricks, 
2024) which was a tool used to help create Lego Models for my game, I followed guides 
on how it all worked and eventually had to also learn how Blender works so that I may 
create animations and export these Lego builds into Unreal Engine.

21



Reference List
Brown, L., 2024a. Gantt Chart. [online] login.microsoftonline.com. Available 
at: <https://staffsuniversity-
my.sharepoint.com/:x:/g/personal/b017629l_student_staffs_ac_uk/EZshrgCLZxpJq
76aJrsIOwoBcGHF65GSvcPfjwR1-wJQdw> [Accessed 1 March 2024].

Brown, L., 2024b. Lego Portals Form. [online] forms.office.com. Available 
at: <https://forms.office.com/e/jiXVM6K7Qi> [Accessed 1 March 2024].

Brown, L., 2024c. Lego Portals Trello Board. [online] trello.com. Available 
at: <https://trello.com/b/K4Bt24sn/lego-portals-ptd> [Accessed 1 March 
2024].

Brown, L., 2024d. Project Lego Portals Miro. [online] miro.com. Available 
at: <https://miro.com/app/board/uXjVN5Z4-bI=/?share_link_id=716218909060> 
[Accessed 1 March 2024].

Brown, L., 2024e. PTD - Final Gameplay Video. [online] www.youtube.com. 
Available at: <https://youtu.be/zoDBCeyKoiI?si=QvU916J_j8k6FIlA> [Accessed 1 
March 2024].

Brown, L., 2024f. PTD - Lego batman gameplay elements. [online] 
www.youtube.com. Available at: <https://www.youtube.com/watch?v=ylKbgG6vm_s> 
[Accessed 1 March 2024].

Laoyan, S., 2022. What Is Agile Methodology? (A Beginner’s Guide). [online] 
Asana. Available at: <https://asana.com/resources/agile-methodology>.

Mecabricks, 2024. Mecabricks.com. [online] www.mecabricks.com. Available at: 
<https://www.mecabricks.com/>.

Wikipedia, 2010. File:360 controller.svg - Wikipedia. [online] 
commons.wikimedia.org. Available at: 
<https://en.m.wikipedia.org/wiki/File:360_controller.svg> [Accessed 1 March 
2024].

Wikipedia, 2024. QWERTY. [online] Wikipedia. Available at: 
<https://en.wikipedia.org/wiki/QWERTY#/media/File:KB_United_States.svg> 
[Accessed 1 March 2024].

22


	Slide 1: Lego Portals
	Slide 2: Context Page
	Slide 3: Controls
	Slide 4: Project Introduction
	Slide 5: Project Introduction
	Slide 6: Platforms
	Slide 7: Systems And Diagrams
	Slide 8: Systems And Diagrams
	Slide 9: Systems And Diagrams
	Slide 10: Systems And Diagrams
	Slide 11: Systems And Diagrams
	Slide 12: Systems And Diagrams
	Slide 13: Systems And Diagrams
	Slide 14: Systems And Diagrams
	Slide 15: Systems And Diagrams
	Slide 16: Systems And Diagrams
	Slide 17: Diagrams in Action
	Slide 18: Optimisation and Profiling
	Slide 19: Coding Standards
	Slide 20: Coding Standards
	Slide 21: Production Overview
	Slide 22: Reference List

