TensorFlow vs PyTorch: Comparative Analysis of Algorithm Performance in Project by Sharelle David Modern Machine Learning

Supervisors: Dr. Mahsa Zolfaghari, Dr. Maryam Shahpasand

1. Introduction

This project analyzed the performance of two machine learning frameworks using python. I produced an image classification model by developing a hybrid Convolutional Neural Network, deployed the algorithm onto TensorFlow and PyTorch. Testing the algorithm performances. TensorFlow and PyTorch models, particularly with advanced architectures like CNNs, was a complex experience to achieve a grasp on Application Programming Interface API. Hyperparameter tuning and optimization was implemented, the results I achieved a latency reduction of 8.2% per image.

Figure 1 – Diagram of AI Subsets

2. Research

TensorFlow - open-source library for deep neural networks. flexible architectures for training machine learning models and symbolic computational graphs that represent mathematical operations and data flows and nodes. Simple built-in high-level API. Visualizing training with Tensor board library. [1] **PyTorch** - an open-source machine learning library using python programming typically used for developing neural network models. Python-like coding. Dynamic graph. Easy and quick editing. Good documentation and community support. [2] CNN - A convolution neural network is specifically designed for processing grid data images. Techniques used: Data Augmentation, Batch Normalization, Dropout, Interpreting/Visualizing, Object Localization & Detection, Adversarial Training.[3]

3. Design		
TensorFlow and PyTorch		Zero Paddir
were used as Deep Learning frameworks. ResNet50 CNN model and CIFAR10 dataset used as the architecture and dataset for the image classification CNN. The	C	CONV
	Sta	Batch Norm
	98 T	ReLu
	U	Max Pool
	8 C	Conv Block
	ige T	ID Block
	in C	1
onvironment for developing	Stag	Conv Block
environment for developing	tea L	ID Block
the CNN for each	Sta C	Conv Block
framework was Google	ge4	ID Block
Colab.	8	Conv Block
	age 5	ID Block
		Avg Pool
		Flattening
Figure 3 – ResNet50 CNN Model		FC

6. Solution

To improve my evaluation of the two libraries performances, CIFAR100 would have been used instead of CIFAR10 as the dataset. The benefits of training the hybrid convolution neural network with a larger dataset would have given the deep learning frameworks more processing to do and the latency and well as accuracy metrics more of a challenge to truly test the deep learning frameworks capabilities and processing time. Hyperparameters such as quantization to be introduced to improve testing process and overall performance metrics.

7. References

 F. Chollet, 2022, 'Deep Learning with TensorFlow and Keras', Available at: https://books.google.co.uk/books?hl=en&Ir=& id=iq6REAAAOBAJ&oi=fnd&pg=PP1&dq=tenso rflow&ots=ujuuU4pQl&sig=BVUJ9Y_mbapaR t0XrdbZvBfEHuY&redir_esc=y#v=onepage&g= tensorflow&ffalse Accessed on 13/04/2024.
S. Chintala, 2020, 'Deep Learning wit PyTorch', Available at: https://books.google.co.uk/books?id=BjszEAA AOBAJ&printsec=frontcover&source=gbs_ge_ summary_r&cad=0#v=onepage&q&f=alse

Accessed on 15/04/2023

3. Z. Zhao, 2023, 'ressearch on Text Generation Model of Natural Language Processing Based ov Computer Artifical Intelligence', Available at: <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?t</u> <u>p=&arnumber=10257788</u> Accessed on 13/04/2024